دو شنبه 2 / 7 / 1390برچسب:, :: 23:52 :: نويسنده : ahmad & saman
اساساً اگر بخواهید انرژیهای تجدیدپذیر از كاربرد وسیعی برخوردار شوند باید كه تكنولوژیهای ارایه شده ساده و قابل اعتماد بوده و برای كشورهای كمتر توسعه یافته نیز مشكلات فنی به همراه نداشته باشد و بتوان از منابع محدود مواد خام آنها نیز استفاده كرد. در مرحله بعدی نیز باید به آب زیاد نیاز نداشته باشد. در همینجا باید گفت كه تكنولوژی دودكش دارای این شرایط است.
بررسیهای اقتصادی نشان داده است كه اگر این نیروگاهها در مقیاس بزرگ (بزرگتر یا مساوی 100 مگاوات) ساخته شوند، قیمت برق تولیدی آنها قابل مقایسه با برق نیروگاههای متداول است. این موضوع كافی است كه بتوان انرژی خورشیدی را در مقیاسهای بزرگ نیز به خدمت گرفت. بر این اساس میتوان انتظار داشت كه دودكشهای خورشیدی بتوانند در زمینه تولید برق برای مناطق پرآفتاب نقش مهمی را ایفا كنند.
باید توجه داشت كه تكنولوژی دودكش خورشیدی در واقع از سه عنصر اصلی تشكیل شده است كه اولی جمعكننده هوا و عنصر بعدی برج یا همان دودكش و قسمت آخر نیز توربینهای باد آن است و همه عناصر آن برای قرنها است كه بصورت شناخته شده درآمدهاند و تركیب آنها نیز برای تولید برق در سال 1931 توسط گونتر مورد بحث قرار گرفته است. در سال 84-1983 نیز نتایج آزمایشات و بحثهای نمونهای از دودكش خورشیدی كه در منطقه مانزانارس در كشور اسپانیا ساخته شده بود، ارایه شد. در سال 1990 شلایش و همكاران در مورد قابل تعمیم بودن نتایج بدست آمده از این نمونه دودكش بحثی را ارایه كردند. در سال 1995 شلایش مجدداً این بحث را مورد بازبینی قرار داد. در ادامه در سال 1997 كریتز طرحی را برای قرار دادن كیسههای پر از آب در زیر سقف جمعآوری كننده حرارت ارایه كرد تا از این طریق انرژی حرارتی ذخیرهسازی شود. گانون و همكاران در سال 2000 یك تجزیه و تحلیل برای سیكل ترمودینامیكی ارایه كردند و بعلاوه در سال 2003 نیز مشخصات توربین را مورد تجزیه و تحلیل قرار دادند. در همین سال روپریت و همكاران نتایج حاصل از محاسبات دینامیك سیالاتی و نیز طراحی توربین برای یك دوربین خورشیدی 200 مگاواتی را منتشر ساختند. در سال 2003 دوز سانتوز و همكاران تحلیلهای حرارتی و فنی حاصل از محاسبات حل شده به كمك كامپیوتر را ارایه كردند. در حال حاضر در استرالیا طرح نیروگاه دودكش خورشیدی با ظرفیت 200 مگاوات در مرحله طراحی و اجرا است http://www.enviromission. Com.au. باید گفت كه استرالیا مكان مناسبی برای این فناوری است چون شدت تابش خورشید در این كشور زیاد است. در ثانی زمینهای صاف و بدون پستی و بلندی در آن زیاد است و دیگر اینكه تقاضا برای برق از رشد بالایی برخوردار است ونهایتاً اینكه دولت این كشور خود را به افزایش استفاده از انرژیهای تجدیدپذیر ملزم كرده است و از این رو به 9500 گیگاوات ساعت برق در سال از منابع تجدید پذیر جدید نیاز دارد. اصول كار: هوا در زیر یك سقف شفاف كه تشعشع خورشیدی را عبور میدهد، گرم میشود. باید توجه داشت كه وجود این سقف و زمین زیر آن بعنوان یك كلكتور یا جمعكننده خورشیدی عمل میكند. در وسط این سقف شفاف یك دودكش یا برج عمودی وجود دارد كه هوای زیادی از پایین آن وارد میشود. باید محل اتصال سقف شفاف و این برج بصورتی باشد كه منفذی نداشته باشد و اصطلاحاً «هوا بند» شده باشد. بر همگان روشن است كه هوای گرم چون سبكتر از هوای سرد است به سمت بالای برج حركت میكند. این حركت باعث ایجاد مكش در پایین برج میشود تا هوای گرم بیشتری را به درون بكشد و هوای سرد پیرامونی به زیر سقف شفاف وارد شود. برای اینكه بتوان این فناوری را بصورت 24 ساعته مورد استفاده قرارداد میتوان از لولهها یا كیسههای پرشده از آب در زیر سقف استفاده كرد. این موضوع بسیار ساده انجام میشود یعنی در طول روز آب حرارت را جذب كرده وگرم میشود و در طول شب این حرارت را آزاد میكند. قابل ذكر است كه باید این لولهها را فقط برای یكبار با آب پر كرده و به آب اضافی نیازی نیست. بنابراین اساس كار بدین صورت است كه تشعشع خورشیدی در این برج باعث ایجاد یك مكش به سمت بالا میشود كه انرژی حاصل از این مكش توسط چند مرحله توربین تعبیه شده در برج به انرژی مكانیكی تبدیل شده و سپس به برق تبدیل میشود. توان خروجی: به زبان ساده میتوان توان خروجی برجهای خورشیدی را بصورت حاصلضرب انرژی خورشیدی ورودی (Qsolar) در راندمان مربوط به جمعكننده، برج و توربین بیان كرد: در ادامه سعی میشود پارامترهای قابل محاسبه مشخص شوند ودر این راستا باید گفت كه Qsolar را میتوان بصورت حاصلضرب تشعشع افقی (Gh) درمساحت كلكتور (Acoll) نوشت. در داخل برج جریان گرمایی ناشی از كلكتور به انرژی سینتیك (بصورت كنوكسیون) و انرژی پتانسیل (افت فشار در توربین) تبدیل میشود. بنابراین متوجه میشویم كه اختلاف دانسیته هوا كه ناشی از افزایش دما در كلكتور است، بعنوان یك نیروی محركه عمل میكند. هوای سبكتر موجود در برج در قسمت تحتانی و در قسمت فوقانی برج به هوای اطراف متصل است و از این رو باعث ایجاد یك حركت روبه بالا میشود. در یك چنین حالتی یك اختلاف فشار بین قسمت پایین برج (خروجی كلكتور) و محیط اطراف ایجاد میشود كه فرمول آن بصورت زیر است: بر این اساس با افزایش ارتفاع برج، ΔPtot افزایش خواهد یافت. البته این اختلاف فشار را میتوان (با فرض قابل صرفنظر كردن اتلافهای اصطكاكی) به اختلاف استاتیك و دینامیك تقسیم كرد: قابل ذكر است كه اختلاف فشار استاتیك در توربین افت میكند و اختلاف فشار دینامیك بیانگر انرژی سینتیك جریان هوا است. میتوان بین توان موجود دراین جریان و اختلاف فشار كل و جریان حجمی هوا وقتی كه ΔPs=0، رابطهای نوشت: راندمان برج را بصورت زیر بیان میكنند: در عمل افت فشار استاتیك ودینامیك ناشی از توربین است. در حالتی كه توربین وجود نداشته باشد میتوان به حداكثر سرعت جریان دست یافت و تمام اختلاف فشار موجود به انرژی سینتیك تبدیل میشود: بر اساس تخمین Boussinesq حداكثر سرعت قابل دسترسی برای جریان جابجایی آزاد بصورت زیر است: كه دراین فرمول ΔT همان افزایش دما بین محیط و خروجی كلكتور (ورودی دودكش) است. معادل زیر بیانگر راندمان برج و پارامترهای موثر در آن است: بر اساس این نمایش ساده شده در بین پارامترهای دخیل در دودكش خورشیدی، مهمترین عامل در راندمان برج، ارتفاع آن است. مثلاً برای برجی به ارتفاع 1000 متر اختلاف بین محاسبات دقیق و محاسبه تقریبی ارایه شده، قابل صرفنظر كردن است. با دقت در معادلات (1)، (2) و (3) میتوان دریافت كه توان خروجی یك دودكش خورشیدی متناسب باسطح كلكتور و ارتفاع برج است. مشخص شد كه توان تولید برق یك دودكش خورشیدی متناسب با حجم حاصل از ارتفاع برج و سطح كلكتور است یعنی میتوان با یك برج بلند و سطح كم و یا یك برج كوتاه با سطح وسیع به یك میزان برق تولید كرد. البته اگر اتلاف اصطكاكی وارد معادلات شود دیگر موضوع فوق صادق نیست. با این وجود تا زمانی كه قطر كلكتور بیش از حد زیاد نشود میتوان از قاعده سرانگشتی فوق استفاده كرد. كلكتور: هوای گرم مورد نیاز برای دودكش خورشیدی توسط پدیده گلخانهای در یك محوطهای كه با پلاستیك یا شیشه پوشانده شده و حدوداً چند متری از زمین فاصله دارد، ایجاد میشود. البته با نزدیك شدن به پایه برج، ارتفاع ناحیه پوشانده شده نیز افزایش مییابد تا تغییر مسیر حركت جریان هوا بصورت عمودی با كمترین اصطكاك انجام پذیرد. این پوشش باعث میشود كه امواج تشعشع خورشید وارد شده و تشعشعهای با طول موج بالا مجدداً از زمین گرم بازتاب كند. زمین زیر این سقف شیشهای یا پلاستیكی، گرم شده و حرارت خود را به هوایی كه از بیرون وارد این ناحیه شده است و به سمت برج حركت میكند، پس میدهد. ذخیرهسازی: اگر به یك ظرفیت اضافی برای ذخیرهسازی حرارت نیاز باشد، میتوان از لولههای سیاه رنگ كه با آب پر شدهاند و بر روی زمین در داخل كلكتور قرار داده شدهاند، بهره جست. این لولهها را باید فقط یكبار با آب پر كرده و دو طرف آنها را بست و بنابراین تبخیر نیز رخ نخواهد داد. حجم آب درون لولهها بنحوی انتخاب میشود كه بسته به توان خروجی نیروگاه لایهای با ضخامت 20-5 سانتیمتری تشكیل شود. در شب زمانیكه هوای داخل كلكتور شروع به سرد شدن میكند، آب داخل لولهها نیز حرارت ذخیره شده در طول روز را آزاد میكند. ذخیره حرارت به كمك آب بسیار موثرتر از ذخیره در خاك به تنهایی است چون همانطور كه میدانید انتقال حرارت بین لوله و آب بسیار بیشتر از انتقال حرارت بین سطح خاك و لایههای زیرین است و این از آن بابت است كه ظرفیت حرارتی آب پنج برابر ظرفیت حرارتی خاك است. برج: برج به خودی خودنقش موتور حرارتی نیروگاه را بازی میكند و همانند یك لوله تحت فشار است كه به دلیل دارا بودن نسبت مناسب سطح به حجم از اتلاف اصطكاكی كمی برخوردار است. در این برج سرعت مكش به سمت بالای هوا تقریباً متناسب با افزایش دمای هوا (ΔT) در كلكتور و ارتفاع برج است. در یك دودكش خورشیدی چند مگاواتی، كلكتور باعث میشود كه دمای هوا بین 35-30 درجه سانتیگراد افزایش یابد و این به معنی سرعتی معادل m/sec15 است كه باعث حركت شتابدار هوا نخواهد شد و بنابراین برای انجام عملیات تعمیر و نگهداری میتوان براحتی وارد آن شد و ریسك سرعت بالای هوا وجود ندارد. توربینها: با بكارگیری توربینها، انرژی موجود در جریان هوا به انرژی مكانیكی دورانی تبدیل میشود. توربینهای موجود در دودكش خورشیدی شبیه توربینهای بادی نیستند و بیشتر شبیه توربینهای نیروگاههای برقابی هستند كه با استفاده از توربینهای محفظهدار، فشار استاتیك را به انرژی دورانی تبدیل میكنند. سرعت هوا در قبل و بعد از توربین تقریباً یكسان است.. توان قابل حصول در این سیستم متناسب با حاصلضرب جریان حجم هوا در واحد زمان و اختلاف فشار در توربین است. از نقطه نظر بهرهوری بیشتر از انرژی، هدف سیستم كنترل توربین بحداكثر رساندن این حاصلضرب در تمام شرایط عملیاتی است. مدل آزمایشی: برای ساخت یك مدل ازمایشی، تحقیقات تئوریك مفصلی انجام شده كه آزمایشات تونل باد وسیعی را بهمراه داشت و نهایتاً در سال 1981 منجر به ساخت واحدی با توان تولید 50 كیلووات برق در منطقه مانزانارس (Manzanares) در 150 كیلومتری جنوب مادرید در كشور اسپانیا شد و این واحد از كمك مالی وزارت تحقیق و فناوری آلمان برخوردار بود. هدف از این طرح تحقیقاتی، تطبیق، اندازهگیری محلی، مقایسه پارامترهای تئوریك و عملی و بررسی تاثیر اجزاء مختلف دودكش خورشیدی بر راندمان و نیز توان تولیدی این فناوری تحت شرایط واقعی و نیز شرایط خاص آب و هوایی بود. پوشش سقف قسمت كلكتور نه تنها باید شفاف یا حداقل نیمه شفاف باشد بلكه باید محكم بوده و از قیمت قابل قبولی برخوردار باشد. برای این پوشش نوعی از ورقههای پلاستیكی و نیز شیشه مورد توجه قرار گرفتند تا مشخص شود در درازمدت كدامیك از آنها بهتر بوده و صرفه اقتصادی دارد. باید توجه داشت كه شیشه میتواند سالیان سال در مقابل طوفان و باد مقاومت كرده وآسیب نبیند و در مقابل بارانهای فصلی نیز نوعی خاصیت خود تمیز كنندگی بروز میدهد. در عوض لایههای پلاستیكی را باید درون یك قاب قرار داد و وسط آنها نیز اصطلاحاً به سمت زمین شكم میدهد. هرچند هزینه اولیه سرمایهگذاری ورقههای پلاستیكی كمتر است ولی در مانزانارس با گذشت زمان این لایهها شكننده شدند و آسیب دیدند. البته با پیشرفت در ساخت لایههای مقاوم در برابر دما و اشعه ماوراء بنفش میتوان به استفاده از پلاستیكها نیز امیداور بود. مدل ساخته شده در اسپانیا در سال 1982 تكمیل گشت و هدف اصلی از ساخت آن نیز گردآوری اطلاعات بود. بین اواسط 1986 تا اوایل 1989 این واحد بطور مرتب هر روز مورد استفاده قرار گرفت و برق تولیدی آن نیز به شبكه برق سراسری متصل شد. طی این دوره 32 ماهه این واحد بصورت كاملاً اتوماتیك راهبری شد. در سال 1987 در این منطقه حدود 3067 ساعت با شدت تابش w/m2 150 وجود داشته است. یكی از مطالب قابل توجه در راهبری این مدل آزمایشی آن بود كه اسپانیاییها در زیر قسمت كلكتور اقدام به كشاورزی كردند تا این امكان را نیز در طرح خود مورد بررسی قرار دهند و اصطلاحاً از زمین بصورت بهینه استفاده كنند. نتیجه این قسمت از تحقیق آن بود كه توانستند گیاه مورد نظر خود را پرورش دهند و تاثیر آن را بر رطوبت هوای زیر سقف و دیگر پارامترهای مربوطه مورد ارزیابی قرار دهند. تمامی نتایج بدست آمده بیانگر آن بوده است كه این فناوری از قابلیت كافی جهت استفاده در مقیاسهای بزرگتر را دارا است. بر پایه این نتایج یك سری تحقیقات توسط موسسات و دانشگاههای مختلف انجام شد تا وضعیت آن را شبیه سازی و مدلسازی كند تا بتوان نتایج این سیستم در مقیاس بزرگتر را پیشگویی كرده و قابل بررسی كرد. تحولات آینده: همانطور كه در ابتدای مقاله اشاره شد در آینده نزدیك قرار است یك نیروگاه دودكش خورشیدی با ظرفیت 200 مگاوات در استرالیا ساخته شود كه ارتفاع برج آن 1000 متر خواهد بود. بر اساس اطلاعات بدست آمده كشور آفریقای جنوبی نیز در نظر دارد با كمك سازمانهای بینالمللی و نیز نهادهای سازمان ملل متحد یك نیروگاه با برجی به ارتفاع 1500 متر احداث كند تا از آن برای رفع كمبود برق خود استفاده كند. در این ارتباط باید متذكر شد كه دولت هند نیز برای اجرای این طرح در ایالت گجرات اعلام آمادگی كرده است. هر چند در ابتدا ساخت برجهای مرتفع كاری سخت بنظر میرسد ولی نباید از نظر دور ساخت كه برج مرتفع شهر تورنتو كانادا در حال حاضر دارای 600 متر ارتفاع است و ژاپنیها در نظر دارند آسمانخراشهایی با ارتفاع 2000 متر در مناطقی بسازند كه امكان زمین لرزه آنها نیز زیاد است و نهایتاً آنكه ساخت برج میلاد در كشورمان ایران نیز تاییدی بر این مدعاست كه امروزه ساخت یك چنین سازههایی دور از دسترسی نیست و ضمناً ما در ساخت سازه سدهای آبی نشان دادهایم كه براحتی میتوانیم سازههای عظیم بتنی را برپا سازیم. جهت اطلاع بیشتر در جدول 2 اندازههای مختلف فناوری دودكش خورشیدی برای ظرفیتهای مختلف تولید برق ذكر شده است. نباید از نظر دور داشت كه با افزایش قیمت سوختهای فسیلی معادلات به نفع فناوریهای مرتبط با انرژیهای تجدیدپذیر تغییر خواهد كرد. در ثانی در كشورهایی كه دستمزد نیروی كار پایین است، هزینه تولید برق با این روش كاهش خواهد یافت چون تقریباً نیمی از هزینه ساخت یك چنین نیروگاهی مربوط به هزینه ساخت كلكتور میشود كه با كارگران ارزان و نسبتاً غیرماهر میتوان براحتی آن را ساخت. نتیجهگیری: با توجه به اجرایی شدن معاهده زیستمحیطی كیوتو پس از پیوستن روسیه و عضویت ایران در این معاهده، بنظر میرسد كه باید به دنبال راههایی جهت كاستن از میزان انتشار گازهای گلخانهای بود. یكی از بهترین روشها جهت حصول به این هدف، استفاده از انرژیهای تجدیدپذیر است و در این راستا برای كشورهای در حال توسعه میتوان فناوری «دودكش خورشیدی» را معرفی كرد. این معرفی از آن جهت است كه قسمت عمده كار با نیروی نسبتاً غیرماهر قابل انجام است و این سیستم قادر است بدون نیاز به تعمیر و نگهداری خاص برای مدت مدیدی برق تولید كند و مناسب برای كشورهایی است كه میزان تابش خورشید در آنها زیاد است. بعلاوه نباید رشد بالای تقاضا برای برق در كشوری مانند ایران را نیز از یاد برد. در ضمن میتوان اینگونه طرحها را با استفاده از اعتبارات تعیین شده در معاهده كیوتو كه اصطلاحاً CDM (Clean Development Mechanism) خوانده میشوند و حتی اعتبارات دیگر سازمانهای بینالمللی پیگیری كرد چون بسیاری از سازمانها و كشورها حاضرند جهت استفاده از نتایج و نیز توسعه اینگونه فناوریها،كمكهایی را به كشورهای داوطلب اعطا كنند.
نظرات شما عزیزان:
پيوندها نويسندگان |
|||||
|