سیر تكاملی ژنراتورهای سنكرون

(از ابتدا تا پایان دهه 1980)

هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع طراحی ژنراتور سنكرون است. به این منظور، بررسی مقالات منتشر شده IEEE كه با این موضوع مرتبط بودند، در دستور كار قرار گرفت. به عنوان اولین قدم كلیه مقالات مرتبط در دهه‌های مختلف جستجو و بر مبنای آنها یك تقسیم‌بندی موضوعی انجام شد. سپس سعی شد بدون پرداختن به جزییات، سیرتحولات استخراج‌ شود. رویكرد كلی این بوده است كه تحولات دارای كاربرد صنعتی بررسی شود.
با توجه به گستردگی موضوع و حجم مطالب، این گزارش در دو بخش ارایه شده است. در بخش اول ابتدا پیشرفتهای اولیه ژنراتورهای سنكرون از آغاز تا دهه 1970 بررسی شده است و در ادامه تحولات دهه‌های 1970 و 1980 به تفصیل مورد توجه قرار گرفته‌اند. در پایان هر دهه یك جمعبندی از كل فعالیتهای صورت گرفته ارایه و سعی شده است ارتباط منطقی پیشرفتهای هر دهه با دهه‌های قبل و بعد بیان شود.

ماشین سنكرون همواره یكی از مهمترین عناصر شبكه قدرت بوده و نقش كلیدی در تولید انرژی الكتریكی و كاربردهای خاص دیگر ایفاء كرده است.
ساخت اولین نمونه ژنراتور سنكرون به انتهای قرن 19 برمی‌گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانكفورت آلمان بود. دركانون این تحول؛ یك هیدروژنراتور سه فاز 210 كیلووات قرار گرفته بود.

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...



ادامه مطلب ...


هادیهای آلومینیوم آلیاژی هادیهایی هستند كه تمامی رشته سیم‌های آنها از آلیاژهای آلومینیوم ساخته شده است. در ابتدا از آلومینیوم 5005 جهت ساخت این سیمها استفاده می‌شد كه استحكام آن تنها در اثر كارسختی بوجود می‌آید، اما آلومینیوم آلیاژی 6201 كه قابلیت عملیات حرارتی نیز دارد در ساخت این هادیها، بدلیل استحكام بالای آن در حرارتهای بالای كاری خطوط انتقال، گسترش چشمگیری داشته است. استفاده از هادیهای آلومینیوم آلیاژی برای اولین بار در سال 1921 میلادی در آمریكا آغاز شد و پس از آن در دهه 50 و 60 میلادی از این هادیها برای خطوط انتقال و توزیع در كشورهای اروپایی (آلمان، فرانسه و ...) و نیز ژاپن به مقدار زیادی استفاده شد. در انگلستان نیز حدود 30 سال گذشته هادیهای AAAC به عنوان عمومی‌ترین و مناسب‌ترین هادیها مورد استفاده برای نصب خطوط جدید و جایگزینی خطوط قدیمی مطرح شده‌اند.
امروزه استفاده از این هادیها به مقدار بسیار زیادی (در برخی كشورها تا حدود 70-60 درصد خطوط انتقال و توزیع) گسترش یافته است. در كشور ما متاسفانه این هادیها تاكنون شناخته نشده و در نتیجه چندان مورد استفاده قرار نگرفته‌اند اما با توجه به امكانات موجود بنظر می‌رسد بتوان دراین زمینه فعالیتهای مناسبی صورت داد.

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 



ادامه مطلب ...


از این کابلها که وزن آن ها کم بوده و دارای عایق پلی اتیلن کراس لینک (XLPE )می باشند، در شبکه های هوایی برای ولتاژهای ماکزیمم 12، 24، 36 کیلوولت استفاده می شود .
چکیده : در مواردی که استفاده از خطوط با هادیهای لخت منجر به بروز حوادث گذرا می شود و یا اینکه رعایت حریم و سایر نکات فنی و ایمنی شبکه برق مقدور نیست استفاده از کابلهای خود نگهدار هوایی راه حل منطقی است . از عمده ترین این موارد می توان به مسیرهایی اشاره نمود که دارای عرض کم بوده و یا در آنها موانعی از قبیل ردیف درختان وجود دارد .

 

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 

 

 



ادامه مطلب ...


امروزه و در عصر پیشرفت تکنولوژی، کاربرد و استفاده از طیف‌های فرکانسی و امواج رادیویی در حال گسترش روزافزون است. مهم‌ترین مزیت این فناوری کاهش حجم اتصالات و وسایل رابط همچون سیم‌ها و کابل‌ها هستند که در نتیجه موجب کاهش چشم‌گیر هزینه‌ها می‌گردند. به طوری که روابط بدون سیم جایگزین مطمئن آنها می‌شوند.  

ارتباطات به وسیله امواج رادیویی، برپایه قوانین فیزیک و انرژی امواج الکترومغناطیسی استوار است. بدین منظور برخی مفاهیم اولیه مربوط به این موضوع را به اجمال از نظر می‌گذرانیم. 

همه ما تاکنون عباراتی نظیر UHF, VHF, AM, FM و ... را شنیده‌ایم. فضای اطراف ما آکنده از امواج رادیویی است که در تمام جهات در حال انتشار و عبور و مرور می‌باشند. اصولا یک موج رادیویی یک موج الکترومغناطیسی می‌باشد که معمولا توسط آنتن منتشر می‌گردد. امواج رادیویی دارای فرکانس‌های مختلفی هستند، که برحسب کاربری مطابق با استانداردهایی تقسیم‌بندی شده‌اند. در آمریکا FCC کمیته ملی ارتباطات مسئولیت مدیریت و تصمیم‌گیری در مورد تخصیص طیف‌های فرکانسی و صدور مجوز و یا تعیین استانداردها را برعهده دارد.

 

امواج رادیویی در هوا با سرعتی نزدیک به سرعت نور انتقال می‌یابند. این امر یکی از مهم‌ترین مزایای این فناوری می‌باشد که نقش بسزایی در تسریع ارتباط به عهده دارد.

 

واحد اندازه ‌گیری فرکانس رادیویی hertz "هرتز" یا "سیکل بر ثانیه" است و برای فرکانس‌های بزرگ‌تر، جهت خواندن و نوشتن از عباراتی مانند KHz "کیلوهرتز"، MHz "مگا هرتز" و ... استفاده می‌شود. در جدول تقسیم بندی فرکانس‌ها برحسب واحد آمده است.


 

امواج رادیویی دارای فرکانس‌ها و باندهای مختلفی هستنتد، به وسیله یک گیرنده مخصوص رادیویی شما می‌توانید، امواج مربوط به همان گیرنده را دریافت نمایید. برای مثال زمانی که شما مشغول گوش دادن به یک ایستگاه رادیویی هستید، گوینده فرکانس ۹۱.۵ MHz و باند FM را اعلام می‌کند. رادیوی FM شما تنها می‌تواند گستره فرکانسی تخصیص یافته مربوط به خود را دریافت نماید.

 

 

 

Wavelength یا طول موج یک سیگنال الکترومغناطیسی با فرکانس یا بسامد آن رابطه معکوس دارد، بدین معنی که بالاترین فرکانس کوتاه ‌ترین طول موج را دارا می‌باشد . در کل سیگنال‌های با طول موج‌های بلند تر مسافت بیشتری را می‌پیمایند و از قابلیت نفوذ بهتری در میان اجسام در برابر سیگنال‌های دارای طول موج کوتاه برخوردارند.

 

 

 

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 



ادامه مطلب ...


شنبه 24 / 7 / 1391برچسب:, :: 16:4 ::  نويسنده : ahmad & saman

در چندین ماه گذشته پیشرفت های جدیدی در طراحی پروسسورها، بویژه از طرف شرکت AMD حاصل شد. این شرکت علاوه بر اینکه یک cpu با طراحی کاملا  64 بیتی عرضه کرد که باعث برتری یافتن این شرکت در بازار کامپیوترهای رومیزی پیشرفته گردید، همچنین در حذف کنترل کننده‌های حافظه (MCH) پیشقدم شد که در عملکرد Athlon ۶۴ و چیپهای"optron" یک پیشرفت قابل ملاحظه نسبت به پروسسورهای intel به حساب می‌آید. اینتل به طور متقابل پروسسور سازگار 64 بیتی را عرضه نمود. به تازگی نیز هر دو شرکت پردازشگرهای دوهسته ای را عرضه نموده‌اند، این پروسسورها بهتر از آن چیزی که شما انتظار دارید کار می‌کنند.
 
پروسسورهای اینتل و AMD هر دو دارای دو هسته پروسسور، در حال کار در یک قالب می‌باشند که هر یک از هسته‌ها بصورت مستقل توابع و پردازشهای داده را انجام می‌دهند (در مورد اینتل این مورد کامل تر است) و هر دو این هسته‌ها توسط نرم افزار سیستم عامل هم آهنگ می گردند. در این مقاله سعی شده تا تکنولوژی که در این دو محصول استفاده شده و مقدار افزایش کارایی که شما می توانید از آنها انتظار داشته باشید بررسی گردد. در حال حاضر AMD فقط پروسورهای کلاس سرور opteron با دو هسته را بطور کامل به بازار عرضه کرده و بزودی Athlon ۶۴ x2 برای کامپیوترهای رومیزی را نیز به بازار عرضه می‌کند. در طرف مقابل اینتل در حال حاضر پنتیوم Extreme Edition ۸۴۰ رومیزی با دو هسته را به بازار عرضه نموده در حالی که خطهای تولید Pentium D و dual xeons هنوز متوقف نشده اند. با توجه به اینکه پروسسورهای دو هسته‌ای در اصل یک سیستم چند پروسسوره که در یک قالب قرار گرفته اند، می باشد. اجازه بدهید اینک چندین تکنولوژی که در سیستم های چند پردازشگر استفاده می شود را مورد بررسی قرار دهیم.
 

 

 

 

 

 

برای مشاهده ی متن کامل ، لطفا" به ادامه مطلب بروید...

 

 



ادامه مطلب ...


شنبه 23 / 7 / 1391برچسب:, :: 16:1 ::  نويسنده : ahmad & saman

خانواده STM32 از سری میکروکنترلرهای ۳۲ بیتی مبتنی بر پردازنده ARM Cortex می باشد که با هدف ایجاد معنای جدیدی از آزادی عملکرد برای کاربران میکروکنترلرها ایجاد گشته است. در این خانواده از میکروکنترلرها تلفیقی از کارایی بالا، عملکرد همزمان، پردازش سیگنال های دیجیتال و کاربردهای کم توان در بالاترین سطح کیفی و با حفظ یکپارچگی کامل و سهولت توسعه، ارائه می گردد.
از جمله امکانات مهم میکرکنترلر STM32F103RET6 ، هسته Cortex M3 با سرعت ۷۲MHZ ، اینترفیس موازی LCD ، ۳ عدد ADC 12 بیتی، ۲ عدد DAC 12 بیتی و دارا بودن اینترفیس های متنوعی از جمله USB ، Can ، I2C ، USART ، SDIO و … می باشد.

 



شنبه 22 / 7 / 1391برچسب:, :: 15:58 ::  نويسنده : ahmad & saman

یک تراشه همه کاره دکودر MP3 و WMA می باشد. این تراشه قابلیت ضبط صدا با کیفت بالا و در باند وسیع را داراست، همچنین می تواند MIDI را هم از طریق فایل و هم با استفاده از MIDI keyboard سریال استاندارد پخش نماید.از ویژگی ها و امکانات بارز ماژول می توان به قابلیت های زیر اشاره کرد :

  • قابیلت اتصال به تمام میکروکنترلرها از طریق رابط SPI
  • تامین ولتاژهای مورد نیاز تراشه و راه اندازی کل ماژول با تک ولتاژ ۵ ولت
  • دارای خروجی هدفن به صورت استریو
  • دارای ورودی میکروفن به صورت مونو
  • ایزوله نمودن مناسب در برابر نویز و تغییرات ولتاژ، به جهت بالا بودن کیفیت ضبط و پخش

 



شنبه 21 / 7 / 1391برچسب:, :: 15:54 ::  نويسنده : ahmad & saman

 

امروزه با پیشرفت روز افزون تجهیزات و الكترونیكی شدن آنها، بكارگیری سیستم های یكپارچه رونق زیادی یافته است. به طوری كه در اكثر دستگا ههای جدید از این سیستم ها استفاده می شود. به عنوان مثال گوشی های همراه، دستگاه و ....اكثراً دارای این تجهیزات الكترونیكی می باشند. با توجه به این موضوع اكثر ABS سیستم های ترمز ،GPS شركت ها و كارخانجات الكترونیكی به سمت این سیستم های الكترونیكی روی آورده اند. كه این خود باعث ایجاد یك رقابت در بین تولیدكنندگان پردازنده های سرعت بالا شده است. در این خلال نسل جدید پردازنده های ARM به بازار معرفی شدند ، كه دارای سیستم پردازش 32 بیتی با سرعت پردازش چند مگاهرتز تا چند صد مگ اهرتز می باشند . سرعت بالا، قیمت ارزان و حجم كم این پردازنده ها باعث شد كه اكثر تولیدكنندگان میكروكنترلرها و پروسسورها مانند ATMEL PHILIPS, و... آنرا در لیست محصولات خود قرار دهند.حجم كم پردازنده های ARM باعث شده كه اكثر فضای داخلی میكروكنترلرها برای تجهیزات جانبی مانند DAC ، Serial, LAN, USB, ADC و ... بكار گرفته شود.هسته داخلی تمام میكروكنترلرهای ARM كارخانجات مختلف یكی است بنابراین برنامه نوشته شده برای یك سری از میكروكنترلرها را می توان برای سری دیگر نیز استفاده كرد.

 

 

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 



ادامه مطلب ...


شنبه 20 / 7 / 1391برچسب:, :: 15:50 ::  نويسنده : ahmad & saman

ممکن است تصور شود که ساخت مدارهای مجتمع ، شامل تعداد زیادی قطعه بهم متصل شده روی یک بستر Si از جنبه فنی و اقتصادی مخاطره آمیز باشد، در حالی که روشهای نوین امکان انجام اینکار را بصورت مطمئن و نسبتا کم هزینه فراهم ساخته است. در بیشتر مواقع یک مدار کامل روی تراشه Si را می‌توان بسیار ارزانتر و مطمئنتر از یک مدار مشابه با استفاده از قطعات مجزا تولید کرد. دلیل اصلی این امر امکان ساخت صدها مدار مشابه بطور همزمان روی پولک Si است که این فرآیند تولید گروهی Batch Fabrication نامیده می‌شود. این مدارها که بطور کامل روی یک تراشه نیم رسانا قرار می‌گیرند مدارهای یکپارچه نامیده می‌شوند.

 

 

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 

 



ادامه مطلب ...


شنبه 19 / 7 / 1391برچسب:, :: 15:47 ::  نويسنده : ahmad & saman

خانواده XMEGA نسل دوم از میکروکنترلرهای با مصرف توان پایین (Pico Power Technology) با قابلیتها و کارائی بسیار بالاتر نسبت به سری قبل میکروهای AVR می باشند و قابلیت پردازش داده هم بصورت ۸ بیتی و هم به صورت ۱۶ بیتی را فراهم می نمایند همچنین از نظر معماری وساختار تراشه این سری میکروکنترلها مشابه خانواده قبل میکروهای AVR می باشند.
در خانواده XMEGA تمامی مشکلات و کمبودهای نسل قبلی (MEGA) برطرف شده و قابلیت های جدید برای طراحان در نظر گرفته شده است.

 

 

یکی از نکات مهم در سری XMEGA امکانات و ماژول های موجود بر روی میکرو بوده که حتی این تعداد ماژول بر روی میکروهایی نظیر ARM نیز موجود نیست.
تنها مشکلی که باعث شده تا این سری از میکروکنترلرها از استقبال کمتری نسبت به بقیه میکروکنترلرها روبرو شوند، هزینه بالای پروگرامر مخصوص این میکروکنترلرها بوده که با سری جدید این مشکل نیز مرتفع شده است.
در سری جدید، ماژول USB نیز به این خانواده اضافه شده است و شما می توانید بدون نیاز به هیچ پروگرامر خاصی و فقط از طریق پورت USB میکروکنترلر خود را پروگرام کنید.
سرعت بالا و راحتی پروگرام نمودن از طریق این روش از مهمترین مزایای این سری از میکروکنترلرها می باشد.



شنبه 18 / 7 / 1391برچسب:, :: 15:42 ::  نويسنده : ahmad & saman

خطاهای ناشی از جریان برق عمدتا" به سه دسته تقسیم میشوند:
 1_ اتصال بدنه كه عبارت است از اتصال یكی از سیمهای جریان برق به بدنه دستگاه.
 2_ اتصال كوتاه عبارت است از اتصال دو سیم لخت كه نسبت به هم دارای اختلاف پتانسیل الكتریكی می باشند به یكدیگر.
3_ اتصال زمین كه عبارت است از اتصال یكی از سیم های حامل جریان به زمین .


خطا های نامبرده شده به دوصورت كامل وناقص اتفاق می افتد . دراتصال كامل درمحل اتصالی مقاومت وجودندارد وجریان زیادی از این نقطه عبور میكند اما اگر اتصال ناقص باشد درمحل اتصال مقاومت وجود دارد بنابر این جریان خطا نسبت به حالت قبل كمتر است.

 

 

 

برای مشاهده ی متن کامل، لطفا" به ادامه مطلب بروید...

 



ادامه مطلب ...


چهار شنبه 17 / 7 / 1391برچسب:, :: 11:22 ::  نويسنده : ahmad & saman

شما در این بخش میتوانید   با دانلود کردن فایل مربوطه تصاویری از مهمترین تجهیزات برق فشار قوی شامل : 

 ( ترانس های قدرت -   PT – CT -  CVT- برقگیر- سکسیونر- لاین تراپ- دژنکتور-فیوز کت اوت - رله بوخهلتز و... )  

 را مشاهده کنید.  

از آن جایی که تصاویر دارای کیفیت بالا و حجم قابل توجهی است فایل آن به صورت Pdf آورده   شده  تا براحتی و در زمان کمی قابل دانلود باشد. (تصاویر قابل کپی برداری می باشد.)  

لازم به ذکر است که جهت مشاهده نیاز به نرم افزار Adobe Reader  دارید.   

موفق باشید!

 

زبان : فارسی
نوع فایل: PDF
حجم: 2.18 مگا بایت
تعداد صفحات: 23 صفحه

 



چهار شنبه 16 / 7 / 1391برچسب:, :: 11:22 ::  نويسنده : ahmad & saman
 

 معرفی بیش از ۶۵ تجهیز پستهای فشار قوی   

شما در این بخش با تجهیزاتی مثل اینورتر ،اینترلاک ، باتری و باتری خانه ، بریکر، ترانس نول ساز ،  ترمومتر، استیک ، دیزلخانه ، دیفکت سیلیکاژل ، میتر ، کوپلینگ ،  plc، even recorder   و با رله هایی همچون  REF، TCS ، STAND BY  ، دیستانس ، ریکلوزر ، دیفرانسیل ، فشار شکن ، جریان زیاد و جریان زمین و.... آشنا میشوید.

  

 

زبان : فارسی
نوع فایل: PDF
حجم: 77 کیلو بایت
تعداد صفحات: 11 صفحه

    

 

جهت مشاهده تصاویر مربوط به این مطلب  اینجا  کلیک کنید!




چهار شنبه 15 / 7 / 1391برچسب:, :: 11:8 ::  نويسنده : ahmad & saman
مجموعه حاضر شامل پنج فصل به شرح ذیل و به همراه ضمیمه شرح رله‌های حفاظتی و هشتصد واژه انگلیسی  و فارسی می‌باشد:

فصل اول: تعاریف و اصطلاحات الکتریکی

فصل دوم: خطوط انتقال

فصل سوم: تجهیزات پست

فصل چهارم: حفاظت الکتریکی

فصل پنجم: سیستم مدیریت کیفیت و عملیات در شبکه               

اکنون جهت دانلود بیش از ۸۰۰ پرسش و پاسخ در زمینه رشته مهندسی برق قدرت و شبکه های انتقال و توزیع  بر روی گزینه  دریافت فایل  کلیک کنید.


زبان : فارسی
نوع فایل: PDF
حجم: 718 کیلو بایت
تعداد صفحات: 151 صفحه


 



چهار شنبه 14 / 7 / 1391برچسب:, :: 11:4 ::  نويسنده : ahmad & saman
  رله فشاری  ( PRESSURE RELIEF VALVE ): 

یکی دیگر از رله های مهم در ترانسفورماتورهای قدرت رله فشاری  ( PRESSURE RELIEF VALVE )است .

این رله عموماً بروی ترانس نصب میشود و برای هر 10000 گالن روغن یک رله فشاری باید طبق استاندارد نصب گردد.

عملکرد این رله در برابر فشار زیاد روغن است یعنی زمانی که به هر عللی فشار روغن در داخل ترانس از حد مجاز تعیین شده ( بسته به ظرفیت و قدرت ترانس ) بیشتر شود این رله عمل خواهد کرد . در قدیم ساختمان این رله ها بدین شکل بود که یک صفحه دیافراگمی شکل را بین تانک اصلی و رله فشاری قرار می دادند و یک تیغه چاقویی مانند بروی این دیافراگم قرار داشت که بر اثر فشار زیاد و بالا امدن صفحه دیافراگم و برخورد با تیغه چاقویی باعث پاره شدن صفحه دیافراگمی می شده و بدین طریق فشار روغن با خارج شدن روغن از محل رله فشاری متعادل می گشت . در این رله ها این عیب وجود داشته که اگر چه فشار متعادل میگشته اما بدلیل وجود منفذ خروج بروی ترانس (در اثر پاره شدن صفحه دیافراگمی ) تمامی روغن در کنسرواتور و بوشینگ ها تا رسیدن به سطح رله فشاری می بایستی تخلیه شود . اما امروزه

پشت این صفحه دیافراگمی ( که عموماً از آلومینیوم ساخته میشود ) یک فنر با ثابت فنر مشخص قرار می گیرد که بعد از عملکرد رله فشاری و متعادل شدن فشار روغن در داخل ترانس مجدداً با فشار فنر، صفحه دیافراگمی به محل خود برگشته و از خروج روغن بیشتر میکاهد .

 با عملکرد رله فشاری و بالا آمدن صفحه دیافراگمی ، اهرمی که به صفحه دیافراگمی متصل است سبب تحریک میکرو سوئیچی میشود که جهت فرستادن فرمان قطع به اتاق فرمان است و بلافاصله بریکرهای دو طرف ترانسفورماتور قدرت از مدار خارج شده تا از صدمات بیشتر در داخل ترانس قدرت بکاهد . عملکرد رله فشاری میتواند در اثر اتصالی داخلی سیم پیچ های ترانس و یا بوجود آمدن هر نوع جرقه و اضافه حرارت که موجب انبساط حجمی روغن شود بوجود آید. با عملکرد رله فشاری ، فشار مازادی که در ترانس بوجود آمده با پاشیده شدن روغن به فضای بیرون ترانس قدرت رفع میشود و از صدمه به بوبین های ترانس و یا بوشینگ ها می کاهد . عملکرد این رله بسیار سریع است و در زمان اولیه مونتاژ ترانس در زمان تزریق روغن به داخل ترانس باید دقت لازم را داشت که هنگام تزریق  روغن شیر کنسرواتور باز بوده و بدلیل عدم رویت روغن در کنسرواتور و ادامه تزریق روغن شاهد عملکرد این رله نباشیم .

این رله یکی از رله های مهم در ترانسفورماتورهای قدرت است که حتی رله هایی چون دیفرانسیل یا جریان اضافی قادر به تشخیص آن نمی باشند . این رله نیاز به سرویس خاصی ندارد و تنها بعد از عملکرد باید میکروسوئیچ آن را ریست کرد تا به وضعیت اولیه خودش برگردد.

نکنته مهم در عملکرد این رله اینست که حتماً باید وضعیت ترانس را بررسی نمود چون عملکرد این رله در هنگام کار بسیار نادر است ( گر چه تریپ های ناخواسته و کاذب بخاطرنفوذ آب و شکستگی میکروسوئیچ داشته ایم ) . تست گاز کروماتوگرافی یکی از کارهای اولیه در بروز علت عملکرد این رله خواهد بود که نکات قابل توجهی از وضعیت روغن را بررسی میکند و میتوان پی به عیب های اولیه و بررسی وضعیت داخلی ترانس برد .

 

در بعضی از ترانسها این رله در زیر و یا بدنه کناری ترانس نیز نصب میشود که بسته به نوع و قدرت ترانسفورماتور خواهد بود و وضعیت وساختار خود رله فشاری . این رله چون در یک مرحله عمل میکند لذا مانند رله بوخهلتس و یا ترمومترها وضعیت ارسال آلارم ندارد و تنها فرمان قطع ( تریپ ) را ارسال می کند .




چهار شنبه 13 / 7 / 1391برچسب:, :: 10:59 ::  نويسنده : ahmad & saman
 

حریم خطوط انتقال نیروی برق و انواع آن: 

الف ) حریم درجه یک : دو نوار است در طرفین مسیر خط و متصل به آن که عرض هر یک از این دو نوار در سطح افقی در جدول ذیل ذکر شده است.

ب) حریم درجه دو : دو نوار است در طرفین حریم درجه یک و متصل به آن . فواصل افقی حد خارجی حریم درجه دو از محور خط در هر طرف در ذیل آمده است.  

جدول حریم خطوط انتقال نیرو

ردیف

ولتاژ

حریم درجه یک (متر)

حریم درجه دو (متر)

1

1 تا 20 کیلوولت

3

5

2

33 کیلوولت

5

15

3

63 کیلوولت

13

20

4

132 کیلوولت

15

30

5

230 کیلوولت

17

40

6

400 و 500 کیلوولت

20

50

 

با توجه به اینکه عبور خطوط انتقال نیرو در هر منطقه ای متناسب با ولتاژ خود دارای آثار و تشعشعات متفاوت است ، از این رو برای حفظ سلامت انسانها و جلوگیری از خسارات جانی و مالی و رشد و نمو نباتات طبعاً دارای حریمهایی هستند که رعایت این حریم ها قانوناً الزامی است. دستورالعمل نحوه اجرای طرح خط انتقال به طور کلی و از همان ابتدا در ماده 18 قانون سازمان برق ایران قید شده و به موجب آن وزارت نیرو و شرکت های تابعه مجاز شده اند که در اماکن و مستغلات و املاک ، تأسیسات انتقال نیروی برق را نصب کنند 

 

برخی از آئین نامه های مربوطه : 

ماده 4: 

 در مسیر و حریم درجه یک اقدام به هرگونه عملیات ساختمانی و ایجاد تاسیسات مسکونی و تاسیسات دامداری یا باغ و درختکاری و انبارداری تا هر ارتفاع ممنوع می باشد و فقط ایجاد زراعت فصلی و سطحی و حفر چاه و قنوات و راهسازی و شبکه آبیاری مشروط بر اینکه سبب ایجاد خسارت برای تاسیسات خطوط انتقال نگردد با رعایت ماده 8 این تصویبنامه بلامانع خواهدبود.

ماده 5:

در حریم درجه دو فقط ایجاد تاسیسات ساختمانی اعم از مسکونی و صنعتی و مخازن سوخت تا هر ارتفاع ممنوع می باشد.

ماده 7:

در صورتیکه اشخاصی برخلاف مقررات این آئین نامه عملیآتی یا تصرفاتی در حریم درجه یک و درجه دو خطوط انتقال و توزیع بنمایند مکلفند به محض اعلام ماموران وزارت نیرو موسسات و شرکتهای تابع عملیات و تصرفات اقدام نمایند.

ماده 8:

برای کلیه عملیاتی که به وسیله اشخاص حقیقی یا حقوقی به منظور راهسازی کارهای کشاورزی، حفر چاه و قنوات.عبور حمل بار و ماشین آلات و نظائران در مسیر و حریم خطوط نیروی برق انجام می گیرد باید اصول حفاظتی به منظور جلوگیری از بروز خطرات جانی و ورود خسارت مالی رعایت شده و درمورد حفر چاه و قنوات و راهسازی قبلاً مسوولین عملیاتی خطوط نیروی برق راهنمائی لازم خواسته شود و اجازه کتبی کسب گردد و در هر حال نظر وزارت نیرو باید ظرف یکماه از تاریخ وصول درخواست اعلام شود.

ماده 9:

حریم کابلهای زیرزمینی که در معابر و راهها گذارده می شود در هر طرف نیم متر از محور کابل و تا ارتفاع دو متر از سطح زمین خواهدبود درمواردی که کابل با سایر تاسیسات شهری از قبیل لوله کشی آب و فاضلاب و کابل تلفن و نظائر آن تقاطع نماید استانداردهای متداول شبکه های انتقال و توزیع نیروی برق باید رعایت شود.

ماده 10:

رعایت حریم و استانداردهای مصوب خطوط نیروی برق از طرف کلیه سازمانهای دولتی بخواهند اقدام به ایجاد تاسیسات جدیدی نمایند که با خطوط نیروی برق از روی تاسیسات موجود تلگراف و تلفن و راه و راه آهن عبور می نماید حریم و استانداردهای آن موسسات و شرکتهای تابع باید رعایت شود و انجام طرح های جدید با موافقت قبلی موسسات مربوطه خواهد بود.

موادی از لایحه قانونی رفع تجاوز از تاسیسات آب و برق کشور مصوب 1359 شورای انقلاب

ماده ۱۱:

چنانچه در مسیر حریم و خطوط انتقال و توزیع نیروی برق و حریم کانالها و انهار آبیاری احداث ساختمان یا درختکاری و هر نوع تصرف خلاف مقررات شده یا بشود سازمانهای آب و برق برحسب مورد با اعطای مهلت مناسب با حضور نماینده دادستان مستحدثات غیرمجاز را قلع و قمع و رفع تجاوزخواهند نمود.

ماده ۱۲:

اعطای پروانه ساختمان و انشعاب آب و برق و گاز و سایر خدمات در مسیر و حریم موضوع ماده 9 ممنوع است.




چهار شنبه 12 / 7 / 1391برچسب:, :: 10:56 ::  نويسنده : ahmad & saman
 

بهره برداری مطمئن و بی وقفه از تاسیسات الکتریکی و مراکز تولید نیرو و تامین انرژی الکتریکی مورد نیاز تجهیزات برقی کارخانه جات صنعتی و مراکز اقتصادی تا حدود زیادی به خصوصیات و ویژگی ها و طرز عمل کلیدها و وسایل کنترل مدارها بستگی دارد.

در مدارهای الکتریکی وسایل مختلفی به کار میرود که از مهمترین انها کنتاکتور یا کلید مغناطیسی است .استفاده از این کنتاکتور در مدارهای کنترل تنوع طراحی های مختلف را به وجود می آورد.

برای طراحی مدارهای کنترل و کار با آنها باید وسایل تشکیل دهنده آن را به طور کامل شناخت و به اصول ساختمان و مورد استفاده این وسایل آشنا شد.  

وسایلی که در مدارهای فرمان به کار میروند به این قرار است:

1_کنتاکتور(کلید مغناطیسی)2_شستی استاپ استارت3_رله الکتریکی4_رله مغناطیسی5_لامپ های سیگنال 6-فیوزها 7_لیمیت سویچ8_کلیدهای تابع فشار 9_کلیدهای شناور10_چشم های الکتریکی(سنسورها)11_تایمر و انواع آن12_ترموستات13_کلیدهای تابع دور

در مورد کنتاکتور میتوان گفت که یک کلید مغناطیس است که وقتی ولتاژ مورد نظر به آن اعمال میشود یک سری کنتاکت(یا کلید)باز را بسته و یک سری کنتاکت بسته را باز میکند.که با استفاده از این خاصیت مدارهای مختلفی میتوان مدارهای زیادی رو طراحی کرد.  

ساختمان کنتاکتور: 

 وقتی بوبین به برق وصل میشود با استفاده از خاصیت مغناطیسی ،نیروی

کششی فنر را خنثی میکند و هسته فوقانی را به هسته تحتانی متصل کرده باعث میشود که تعدادی کنتاکت عایق شده از یکدیگر به ترمینال های ورودی و خروجی کلید متصل میشود و یا باعث باز شدن کنتاکت های بسته کنتاکتور بسته کنتاکتور گردد.

در صورتی که مدار تغذیه بوبین کنتاکتور قطع شود ،در اثر نیروی فنری که داخل کلید قرار دارد هسته متحرک دباره به حالت اول باز میگردد.  

مزایای استفاده از کنتاکتورکنتاکتورها نسبت به کلیدهای دستی صنعتی مزایایی به شرح زیر دارند:

1_مصرف کننده می تواند از راه دور کنترل می شود.

2_مصرف کننده میتواند از چند محل کنترل شود.

3_امکان طراحی مدار فرمان اتوماتیک برای مراحل مختلف کار مصرف کننده وجود دارد.

4_سرعت قطع و وصل کلید زیاد و استهلاک آن کم است.

5_از نظر حفاظتی مطمئن ترند و حفاظت مطمئن تر و کامل تری دارند.

6_عمر موثرشان بیشتر است.

7_هنگام قطع برق،مدار مصرف کننده نیز قطع می شود و به استارت مجدد پیدا میکند؛در نتیجه از خطرات وصل ناگهانی دستگاه جلو گیری می کند.

کنتاکتور برای جریان های AC وDC ساخته میشود.تفاوت این دو کنتاکتور در این است که در کنتاکتور های AC از یک حلقه اتصال کوتاه برای جلوگیری از لرزش حاصل از فرکانس برق استفاده می شود. نیروی کششی یک مغناطیس الکتریکی جریان متناوب،متناسب با مجذور جریان عبوری از آن و در نتیجه متناسب با مجذور اندکسیون مغناطیسی است.چون مقدار جریان لحظه ای با توجه به رابطه i=ImaxSIN wt تعقیر میکند،نیروی کششی مغناطیسی نیز برابر با

F=Fmax sin wt (سینوس توان 2 دارد که نمیشد تایپ کنی)

خواهد شد و تعداد دفعاتی که این نیرو ماکزیمم و صفر می شود، به اندازه دو برابر فرکانس شبکه خواهد گردید.در نتیجه ،در لحظاتی که مقدار نیروی کششی بیشتر از نیروی مقاوم فنر های کنتاکتور باشد ،هسته کنتاکتور جذب می شود و در لحظاتی که مقدار نیروی کششی کمتر از مقدار نیروی فنر ها شود،هسته متحرک هسته نیز آزاد شده و به محل اول خود باز می گردد.بدین ترتیب در هسته متحرک لرزش و صدا ایجاد خواهد شد این نوسانات را می توان به وسیله یک حلقه بسته در سطح قطب ها جا سازی شده و حدود نصف تا 3/2 سطح هر قطب را پوشانده است از بین برد و لرزش آن را برطرف کرد. عمل این حلقه آن است که مانند سیم پیچ ثانویه ترانسفورماتوری که در حالت اتصال کوتاه قرار گرفته است،از آن جریان القایی عبور میکند و باعث ایجاد فوران مغناطیسی فرعی در مدار هسته می شود. این فوران فرعی با فوران اطلی اختلاف فاز دارد و در زمانی که نیروی کششی حاطل از فوران اطلی صفر باشد ،نیروی کششی حاصل از فوران اطلی ماکزیمم خواهد بود و در حالتی که نیروی حاصل از فوران ماکزییم باشد ،این نیرو صفر خواهد بود و چون جمع این دو نیرو به هسته متحرک اثر میکند،نیروی کششی در هر لحظه از نیروی مقاومت فنر بیشتر خواهد بود.

ولتاژ تغذیه بوبین متفاوت است و از 24 تا 380ولت ساخته می شود. در اکثر کشورهای صنعتی برای حفاظت بیشتر ،تغذیه بوبین کنتاکتور را زیر ولتاژ حفاظت شده (65ولت)انتخاب میکنند. و یا برای تغذیه مدار فرمان ،ترانسفورماتور مجزا کننده به کار می برند.

شناخت مشخصات کنتاکتور

نوع کنتاکتور

با توجه به نوع مصرف کننده و شرایط کار ،کنتاکتورها دارای قدرت و جریان عبوری مشخصی برای ولتاژهای مختلف هستنند. بنابراین باید به جدول و مشخصات کنتاکتور توجه کافی مبذول کرد و انخاب کنتاکتو.را منطبق بر مشخصات مورد نیاز قرار داد.

برای اتصال مصرف کننده به شبکه باید از کلید یا کنتاکتوری با مشخصات مناسب استفاده کرد که کنتاکت های آن تحمل جریان راه اندازی و جریان دائمی را داشته باشد و همچنین در صورت اتصال کوتاه،جریان لحظه ای زیادی که از مدار عبور می کند. و یا جرقه ای که هنگام اتصال مدار ایجاد می شود ،صدمه ای به کلید نزند.

بدین منظور و برای این که بتوانیم پس از طراحی مدار ،کنتاکتور مناسب را برای اتصال مصرف کننده به شبکه انتخاب کنیم،باید با مقادیر نامی مربوط به کنتاکتور آشنا شویم.

برای انتخاب کنتاکتور در قدرت های مختلف می توان از جدول هایی استفاده کرد.

شستی استاپ استارت و سلکتور سوئیچ های فرمان

شستی ها از جمله وسایل فرمان هستنند که تحریک آنها به وسیله دست انجام میگیرد و در انواع مختلف و برای کاربردهای متفاوت طراحی می شوند.

شستی که پس از تحریک،دو کنتاکت وصل را قطع میکنند استاپ(قطع) و شستی هایی که پس از تحریک دو کنتاکت،قطع را وصل می کنند شستی استارت (وصل) نامیده می شوند. شستی های که هر دو عمل را در یک زمان انجام می دهند،به شستی استارت استاپ یا دوبل معروف هستنند یعنی با فشار کلید دو کنتاکت باز بسته و دو کنتاکت بسته باز می شود.

 

رله اضافه بار(حرارتی یا بیمتال):

دستگاه های الکتریکی را باید در مقابل خطرات و خطاهای احتمالی حفاظت کرد.یکی از راه های حفاظت موتورهای الکتریکی ،استفاده از رله حرارتی و رله مغناطیسی است رله حرارتی موتور را در مقابل اضافه بار حفاظت میکند.

رله اضافه باری جهت کنترل جریان موتورهای الکتریکی بکار میرود و یک نوع رله حفاظتی است.

این رله از دو فلز مختلف الجنس که ضرایب انبساط طولی مختلفی دارند تشکیل شده است. به اطراف این دو فلز به هم چسبیده ،یک رشته سیم حامل جریان الکتریکی پیچیده شده را طوری تنظیم کرد که در اثر افزایش کم جریان ،دستگاه مربوطه بدون دلیل و به سرعت قطع نشود با استفاده از این منحنی ها همچنین می توان آنرا طوری تنظیم کرد که زمان قطع زیاد شده و عبور جریان اضافی موجب صدومه به دستگاه نشود.

شرایط کار این رله ها از(20-)درجه تا (60+)درجه سانتی گراد متغیر است .

رله مغناطیسی

رله مغناطیسی نیز برای کنترل جریان به کار می رود . اصول کار این رله بر اساس پدیده مغناطیس پایه گذاری شده است .

از این رله برای قطع جریان های اتصال کوتاه استفاده می شود.می دانیم که یک اتصال کوتاه باید سریع قطع شود بنابر این در چنین موقعیتی نمی توان از رله اضافه باری(حرارتی)استفاده نمودچون گرم شدن بیمتال رله به یک زمان نسبتا طولانی نیاز دارد.

این رله از یک هسته مغناطیسی که اطراف آن چند دور سیم پیچیده شده تشکیل گردیده است.عبور جریان اتصال کوتاه باعث مغناطیس شدن و جذب اهرم قطع می شود.این رله را به طور مجرا به ندرت مورد استفاده قرار می دهند و در کلیدهای اتوماتیک از آنها بهمراه رله های حرارتی بهره می گیرند.  

لامپ های سیگنال :

لامپ های علامت دهنده یا لامپ های سیگنال در کلیه دستگاه های صنعتی و تابلو های توزیع و تابلو فرمان به کار میروند. نوع استفاده از این لامپ متفاوت است .این لامپ به عنوان لامپ خبر استفاده می شود و میتوان روشن بودن،خاموش بودن و یا عیب دستگاه و...را نشان دهد.

چراغ های مورد استفاده در مدار فرمان ،یک چراغ کم قدرت (2/1تا5وات)است که با ولتاژهای مختلف از 24تا 220ولت کار میکند.این چراغ ها معمولا در سه رنگ استاندارد قرمز،سبزو نارنجی ساخته می شوند.

برای مثال در کارخانه ای که تعداد زیادی موتور در آن واحد مشغول به کار بوده و فواصل آنها تا تابلوی کنترل نسبتا زیاد باشد،از چراغ قرمزی که توسط کنتاکت بازی از کنتاکتور اصلی موتور روشن می شود استفاده می کنند.با استفاده از کنتاکتهای باز کنتاکتور می توان چراغ سبزی را که نمایشگر حالت خاموشی مدار است روشن نمود.در نقشه ها برای نمایش چراغ سیگنال از حرف h استفاده می شود.

فیوزها :

در کلیه تاسیسات الکتریکی برای جلوگیری از صدمه دیدن و معیوب شدن وسایل و نیز برای قطع کردن دستگاه های معیوب از شبکه که بر اثر عئامل مختلف از قبیل نقصان عایق بندی،ضعف استقامت الکتریکی یا مکانیکی و ازدیاد بیش از حد جریان مجاز(اتصال کوتاه)وسایل حفاظتی مختلف به کار می رود.این وسایل باید طوری انتخاب شوند که در اثر اضافه بار یا اتصال کوتاه در کوتاهترین زمان ممکن و قبل از اینکه صدمه ای به سیم ها و شبکه الکتریکی شبکه برسد،مدار قسمت معیوب را قطع کنند.یکی از این وسایل حفاظتی فیوز است فیوزها از نظر زمان قطع بر حسب منحنی ذوب سیم حرارتی داخل انها به دو نوع کند کار و تند کار تقسیم میشوند.

فیوز های تند کار زمان قطع کمتری نسبت به فیوزهای کند کار دارندو به همین دلیل در مصارف روشنایی استفاده می شوند.فیوز های کند کار دارای زمان قطع طولانی تری هستنند و در نتیجه برای راه اندازی موتورهای الکتریکی به کار میروند.تحمل جریان راه اندازی موتور در حدود 3تا 7 برابر جریان نامی است که بر روی کلیه فیوزها جریان نامی انها نوشته شده میشود.این جریان کمتر از جریان ماکزیمیم تحمل فیوز است.

فیوز در انواع فشنگی ،اتوماتیک(آلفا)،مینیاتوری،بکٌس،کاردی (تیغه ای)،شیشه ای یا کارتریج و فیوز های فشار قوی ساخته می شوند.

معمولا فیوزهای که در مدار قدرت به کار میروند،مدار کنتاکتور را در مقابل اتصال کوتاه محافظت میکند؛یعنی در واقع حفاظت سیم های رابط مدار را نیز بر عهده دارد.بنابراین در مدارهایی که مثلا فیوز 25 آمپری به کار می رود،ممکن است در مدار فرمان آنها از سیم یک یا یکو نیم استفاده شود.پس لازم است مدار فرمان با فیوز جداگانه ای حفاظت شود.

فیوزهای اتوماتیک یا آلفا نوعی فیوز خودکار است که عبور جریان بیش از حد مجاز از آن باعث قطع مدار می شود؛اما دوباره می توان شستی آن را به داخل فشار داد تا ارتباط برقرار شود.بعضی از فیوزهای خودکار دو عمل جریان زیاد و بار زیاد در مدار کنترل می کنند؛اما پس از قطع شدن ،باید پس از مدت کمی دباره شستی مربوطه را فشار داد تا مدار وصل شود.

در فیوز های اتوماتیک دو عنصر مغناطیسی و حرارتی وجود دارد که قسمت مغناطیسی آن اتصال کوتاه یا جریان زیاد و قسمت حرارتی آن (بیمتال) بار زیاد (افزایش جریان تدریجی) را قطع می کند.

کلید مینیاتوری نوعی فیوز اوتوماتیک است که از نظر ساختمان داخلی با فیوز آلفا شباهت دارد و از سه قسمت رله مغناطیسی (رله جریان زیاد زمان سریع)،رله حرارتی یا رله بیمتال (رله جریان زیاد تاخیری)و کلید تشکیل شده است.این مجموعه را نیز کلید موتور مینامند.این کلیدها در دو نوع L و G ساخته شده است.نوع Lدر مصارف روشنایی به کار می رود و تند کار است(LIGHT) و نوع G در راه اندازی وسایل موتوری مورد استفاده قرار می گیرد و کند کار است. این کلید ها در انواع تک فاز دو فاز و سه فاز ساخته می شوند.  

کلید های محدود کننده :

کلید محدود کننده(LIMIT SWITCH) که گاهی میکرو سویچ نیز نامیده می شوند،کلیدی است که برای قطع و وصل یک حرکت خطی یا دورانی و یا تعویض جهت دوران یک متحرک به کار می رود.

این کلید اهرمی دارد که وقتی دسته متحرک به آن برخورد می کند کنتاکتی را قطع می نماید. کنتاکت مذبور خود عامل فرمانی است برای ماشینی که هدف کنترل آنست.چنانچه از اسم این کلید بر می اید کلید یاد شده برای محدود کردن حرکت متحرک ها به کار می رود.مثلا در یک چرثقیل سقفی که در چند جهت حرکت می کند وقتی متحرک به انتهای هر قسمت از مسیر خود میرسد،یک کلید محدود کننده مدار رفت را از کار انداخته و مدار برگشت را مهیا میسازد.

مطلب مهمی که باید در کاربرد این کلید ها در نظر گرفت وضعیت کنتاکت ها در موقع وارد آمدن نیرو به اهرم آنها است.کارخانه های سازنده این وضعیت را بر حسب تعغیر طولی یا زاویه ای اهرمشخص می نمایند.  

انواع لیمیت سویچ ساده :

1-کلید محدود کننده فشار انتهایی

2-کلید محدود کننده ای قرقرهای

3-کلی محدود کننده قرقره اییک طرفه از چپ

4-کلید محدود کننده قرقرهای یک طرفه از راست

5-کلید محدود کننده قرقر ه ای دو طرفه

6-کلید محدود کننده آنتنی دو طرفه

کلید تابع فشار(کلید های گازی)

این کلید ها برای کنترل سطح گاز داخل مخازن و کمپرسورها،تنظیم فشار آب داخل لوله ها و روشن و خاموش کردن اتوماتیک این دستگاه ها مورد استفاده قرار م گیرد.عامل فرمان این کلید ،فشار گاز یا مایع داخل مخزن است.

عامل قطع و وصل این کلید گاز می باشد اصول کار آن بدین صورت است که که فشار گاز موثر بر هر صفحه نیرویی معادل F=P.A ایجاد می نماید(P فشار و A سطح مقطع صفحه است).در رله ها F باعث جابه جایی صفحه می شود.این جابه جایی از طریق یک اهرم منتقل شده و کنتاکتی را قطع و وصل می نماید.نیروی برگردان را فنر زیر صفحه ایجاد می کند.پس با انتخاب فنر های مختلف می توان فشار های کم یا زیاد را بر روی صفحه اثر داده و قطع و وصل کنتاکت را بطور دلخواه تنظیم نمود.  

کلید های شناور :

کلید های شناور برای کنترل سطح آب یا مایهات داخل منبع ها،استخر ها و مخازن مورد استفاده قرار می گیرد.ساختمان این کلید از وزنه تعادل ،یک قسمت شناور و یک میکرو سویچ تشکیل شده است.هنگامی که قسمت شناور را تنظیم می کنند با تغیر سطح مایع داخل مخزن شناور تغیر مکان داده به میکرو سویچ داخل کلید فرمان می دهد و باعث قطع و وصل مدار می شود.

چشم های الکتریکی(سنسورها)

این کلید نوعی کلید فرمان دهنده است که بدون برخورد فیزیکی با دست یا هر وسیله دیگری توسط سیستم چشم الکتریکی از فاصله حداقل یک میلی متر و حداکثر8متر واکنش نشان میدهد و فرمان صادر می کند همچنین به وسیله رله ای که در داخل آن به کار رفته ،کنتاکت های را باز می کند یا می بندد و در نتیجه به دستگا ه های مورد نظر فرمان میدهد.از این کلید در دستگاه های صنعتی و خطوط تولید استفاده فراوان می شود.  

رله زمانی (تایمر)و انواع آن :

یکی از وسایل فرمان دهنده مدار های کنترل اتوماتیک ،تایمر ها یا رله های زمانی هستنند که وظیفه کنترل مدار را برای مدت زمان معینی بر عهده دارند.

اصول کار رله ها همانند کنتاکتور ها است با این تفاوت که در رله ها:

1-تمام کنتاکت ها از لحاظ فرم ظاهری شبیه هم هستنند و در مدار های فرمان شرکت می کنند .

2-کنتاکت ها بنا به مقتضیات کار ممکن است به طور لحظه ای یا با تاخیر زمانی قطع و وصل شوند . در این صورت نام رله ،رله لحظه ای یا رله با تاخیر زمانی خواهد بود.

3-رله ها همچنین ممکن است دارای کنتاکت های لحظه ای یا با تاخیر زمانی باشند.البته منظور از تاخیر زمانی فاصله زمانی است که بین عمل کنتاکت (اعم از باز شدن یا بسته شدن) از لحظه اتصال سیم پیچ رله به ولتاژ به وجود می آید.

1-رله زمانی موتوری یا الکترو مکانیکی

این رله بر اساس ساعتی کار میکند که محرک چرخ دنده های آن موتور آسنکرو سنکرو و بیشتر موتور با قطب چاکدار است می باشد.اصول کار آن به این صورت است که دور موتور توسط یک سیستم چرخ دنده کاهش می یابد بطوری که در نهایت ،آخرین چرخ دنده کنتاکت را خیلی به آرامی با یا بسته می کند. زمان شروع رله از لحظه راه اندازی موتور محسوب می شود.

توسط این رله می توان زمان هایی از حدود ثانیه تا حدود ساعت ،و حتی روز و هفته تنظیم نمود.

محل دیسک در لحظه شروع به کار ،قابل تنظیم است و پس از تنظیم زمان آن (توسط زایده خارجی) و تغذیه تایمر ،موتور با دور ثابت به حرکت در می آید و با گردش موتور ،زمان تایمر شروع می شود. پس از گردش ،به علت برخورد با زایده دیسک ،متوقف می شود و به میکرو سویچ داخلی فرمان می دهد و کنتاکت های تایمر عمل می کنند و به طور اتوماتیک قطع می شوند و موتور یا هر وسیلهء دیگر از کار می افتد.البته رله های جدیدی است که هنگام عمل کنتاکت بازی را بسته و کنتاکت بسته ای را باز می کند و می توان موتوری را خاموش یا روشن کرد یا نیرو را از مو توری به موتور دیگر انتقال داد .

2-رله زمانی الکترونیکی

از تایمر های الکترونیکی برای تنظیم زمان های کمتر از ثانیه تا چندین ثانیه استفاده می شود. در ساختمان این تایمر ها ،از مدار ها و اجزای الکترونیکی استفاده می شود.

در در نوعی از این تایمر ها با شارژ و دشارژ شدن یک خازن بوبین یک رله کوچک تحریک می شود. اصول ساختمان رله الکترونیکی بر مبنای مدار RC (خازن و مقاومت)و بر حسب تاخیر زمانی استوار است .تنظیم این نوع تایمر ها بستگی به مقاومت سر راه خازن دارد.

در ساده ترین نوع تایمر الکترونیکی در تایمر نوع خازنی ،رله هنگامی وصل می شود که خازن شارژ بشود و ولتاژ دوسر آن برابر ولتاژ وصل رله گردد.پس از وصل رله ،با ذخیره شدن در خازن روی مقاومتی که توسط کنتاکت باز رله به دو سر خازن وصل می شود تخلیه می گردد.در این نوع با تعغیر ظرفیت خازن می توان زمان تایمر را تنظیم کرد.

3-رله زمانی نیو ماتیکی

در این رله ا خاصیت ذخیره سازی و فشردگی هوا استفاده می شود .به این ترتیب که رله هنگام رها شدن،خیلی راحت رها می شود.

وقتی که بوبین تحریک قسمت متحرک را جذب می کند ،اهرم،قطعه ای را که به شکل دم آهنگری است فشار خواهد داد .هوای دم از طیق سوپاپ یک طرفه خارج می شود. وقتی که بوبین از تحریک خارج می شود ،فنر دم را منبسط می کند .دم از طریق سوپاپ تنظیم ،از هوا پر می شود.سرعت انبساط دم در رابطه با پیچ تنظیم تفاوت می کند وقتی که دم به حالت عادی برگشت ،کنتاکت ها عمل می کنند.بنابراین به وسیله تنظیم کردن پیچ تنظیم ،عمل کردن کنتاکت ها را می توان تعقیر داد.کار این زمان سنج شبیه تایمر موتوری است ؛با این تفاوت که زمان سنج موتوری پس از تنظیم و وصل بوبین آن به ولتاژ شروع به کار می کند،ولی زمان سنج نیو ماتیکی پس از قطع بوبین آن از ولتاژ شروع به کار می کند.

4-رله زمانی بی متال یا حرارتی (تایمر حرارتی)

این نوع تایمر با استفاده از خاصیت بی متال کار می کند و در انواع رله ذوب شونده ،رله حرارتی بی متال و رله حرارتی منعکس کننده میله ای ساخته می شوند.زمانی که جریان از بی متال عبور می کند گرم میشود و پس از مدتی در اثر تعقیر شکل عمل کرد مدار را قطع یا وصل میکند.دقت این نوع تایمر زیاد نیست و آب و هوای محیط بر روی آن اثر می گذارد.   

به طور کلی می توان رله های زمانی را به دو دسته تقسیم کرد:

الف-رله های تاخیر در وصل(ON-DELAY) :به رله ای گفته می شود که باید به رله انرژی داده شود و سپس رله عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله زمانی موتوری.

ب-رله تاخیر در قطع(OFF-DELAY) :به رله ای گفته می شود که بعد از قطع شدن انرژی عمل کرده کنتاکتی را باز یا بسته کند؛مثل رله نیو ماتیکی.

5-رله زمانی هیدرو لیکی

در این رله ها از سیستم هیدرو لیکی جهت تاخیر در مدار استفاده می شود. طرز کار آن طوری است که وقتی جریان برق به رله وصل می شود ،مقداری روغن در داخل آن جابهجا می شود.

برای بازگشت روغن به مکان اولیه زمانی لازم است که این زمان را به عنوان زمان تایمر در نظر میگیرند.این رله ها را در مدارهای مختلف به کار می برند.اگر کسی از دوستان توضیح بیشتری در ارتباط با این رله دارد لطفا ارائه بده تا مطالب کامل تر شود.  

ترموستات :

ترموستات نوعی رله حرارتی است که در مقابل حرارت محیط حساس بوده و عمل میکند.این وسیله در دستگاه های مختلف صنعتی کاربرد فراوان دارد و وظیفه تعادل حرارتی دستگاه را بر عهده دارد.در صورتی که درجه حرارت از حد تنظیمی فراتر رود ،کلید عمل کرده یک کنتاکت باز را می بندد و یا کنتاکت بسته ای را باز می کند.از ترموستات بیشتر در وسایل حرارتی و برودتی مانند شوفاژ،یخچال،و چیلر استفاده می شود. 

کلیدهای تابع دور(گریز از مرکز) :

 

کلید های تابع دور در بعضی الکترو موتورهای یک فاز جهت خارج کردن سیم پیچ کمکی از مدار و در موارد دیگر مانند ترمز جریان مخالف به کار می رود.ساختمان آنها از یک محور و دو وزنه تشکیل شده که به وسیله یک طوق و یک فنر حول محور حرکت می کند و با زیاد و کم شدن سرعت موتور یا وسیله چرخنده ،وزنه های دو طرف به محور نزدیک یا دور می شود ؛به این ترتیب طوق روی محور حرکت می کند و باعث قطع و وصل کلید می شود.




چهار شنبه 11 / 7 / 1391برچسب:, :: 10:51 ::  نويسنده : ahmad & saman
 

سیستمONAN   (روغن طبیعی – هوا طبیعی) :  

در این سیستم ، هوا به طور طبیعی با سطح خارجی رادیاتورهای در تماس است و رادیاتورها به طور طبیعی با هوا خنک می شوند . همچنین گردش روغن در ترانسفورماتور نیز به طور طبیعی صورت می گیرد ؛ یعنی روغن گرم بالا می رود و روغن سرد ، جای آن را می گیرد .این نوع سیستم خنک کنندگی مختص ترانسفورماتورهای با قدرت کم است ؛ زیرا با افزایش قدرت ترانسفورماتور ، حرارت سیم پیچ ها زیاد می شود و روغن باید با سرعت بیشتری در تماس با هوای بیرون قرار گیرد و عمل خنک کنندگی با سرعت بیشتری انجام شود . از این نوع سیستم برای ترانسفورماتورهای قدرت تا MVA 30  مورد استفاده قرار می گیرد . 

 سیستم ONAF (روغن طبیعی – هوا اجباری) :  

در این سیتم ، گردش روغن در داخل ترانسفورماتور به طور طبیعی صورت می گیرد ؛ ولی فن های نصب شده روی بدنه رادیاتورها ، سرعت تماس هوای خارج با بدنه رادیاتور را افزایش می دهد . لذا روغن سریعتر خنک می شود و طبعاً می توان توان ترانسفورماتور را بالا برد . دمیدن هوا توسط فن ها می تواند به طور مداوم یا با فاصله تناوبی انجام شود ؛ بدین صورت که عملکرد فن می تواند تابعی از درجه حرارت روغن

داخل ترانسفورماتور باشد و هنگامی که دمای روغن از حد معینی افزایش یافت ، فن ها به طور خودکار وارد مدار می شوند . البته هنگامی که درجه حرارت محیط خیلی بالا باشد ، ترانسفورماتور می تواند بدون سیستم فن و با خنک شدن طبیعی ، تقریباً تا دو سوم  توان نامی خود کار کند و در صورتی که بخواهیم با توان نامی کار کند ، باید فن ها شروع به کار کنند . این نوع سیستم خنک کنندگی به طور وسیعی در ترانسفورماتورهای قدرت با توان بین 30 تا 60 مگا ولت آمپر مورد استفاده قرار می گیرد.

سیستمONAN   (روغن طبیعی – هوا طبیعی) :

در این سیستم ، هوا به طور طبیعی با سطح خارجی رادیاتورهای در تماس است و رادیاتورها به طور طبیعی با هوا خنک می شوند . همچنین گردش روغن در ترانسفورماتور نیز به طور طبیعی صورت می گیرد ؛ یعنی روغن گرم بالا می رود و روغن سرد ، جای آن را می گیرد .این نوع سیستم خنک کنندگی مختص ترانسفورماتورهای با قدرت کم است ؛ زیرا با افزایش قدرت ترانسفورماتور ، حرارت سیم پیچ ها زیاد می شود و روغن باید با سرعت بیشتری در تماس با هوای بیرون قرار گیرد و عمل خنک کنندگی با سرعت بیشتری انجام شود . از این نوع سیستم برای ترانسفورماتورهای قدرت تا MVA 30  مورد استفاده قرار می گیرد . 

سیستم ONAF (روغن طبیعی – هوا اجباری) :

در این سیتم ، گردش روغن در داخل ترانسفورماتور به طور طبیعی صورت می گیرد ؛ ولی فن های نصب شده روی بدنه رادیاتورها ، سرعت تماس هوای خارج با بدنه رادیاتور را افزایش می دهد . لذا روغن سریعتر خنک می شود و طبعاً می توان توان ترانسفورماتور را بالا برد .

دمیدن هوا توسط فن ها می تواند به طور مداوم یا با فاصله تناوبی انجام شود ؛ بدین صورت که عملکرد فن می تواند تابعی از درجه حرارت روغن داخل ترانسفورماتور باشد و هنگامی که دمای روغن از حد معینی افزایش یافت ، فن ها به طور خودکار وارد مدار می شوند . البته هنگامی که درجه حرارت محیط خیلی بالا باشد ، ترانسفورماتور می تواند بدون سیستم فن و با خنک شدن طبیعی ، تقریباً تا دو سوم  توان نامی خود کار کند و در صورتی که بخواهیم با توان نامی کار کند ، باید فن ها شروع به کار کنند .

این نوع سیستم خنک کنندگی به طور وسیعی در ترانسفورماتورهای قدرت با توان بین 30 تا 60 مگا ولت آمپر مورد استفاده قرار می گیرد . 

سیستم OFAF (روغن اجباری – هوا اجباری) :

در این سیستم ، گردش روغن در داخل ترانسفورماتور به کمک فن ، سرعت داده می شود تا انتقال حرارت با سرعت بیشتری انجام گیرد . فن های هوا نیز بدنه رادیاتورها را در تماس بیشتری با هوا قرار می دهند تا روغن را سریعتر خنک کنند . در این سیستم با توجه به سرعت بسیار بالای خنک کنندگی سیم پیچ ها ، می توان قدرت نامی ترانسفورماتور را به مقدار قابل توجهی افزایش داد . لازم به ذکر است که عموماً از این نوع سیستم خنک کنندگی در ترانسفورماتورهای با توان بیش از MVA 60 استفاده می شود . 

سیستم OFWF  (روغن اجباری – آب اجباری) :

در این سیستم ، ابتدا روغن توسط پمپ از بالای ترانسفورماتور وارد رادیاتور می شود تا پس از عبور از آن ، از پایین رادیاتور وارد ترانسفورماتور گردد . در رادیاتور ، آب خنک کنندگی هم در توسط پمپ در خلاف مسیر روغن در رادیاتور عبور می کند که باعث کاهش دمای روغن می شود . از این نوع سیستم در ترانسفورماتورهای با توان بیش از MVA 60 مورد استفاده قرار می گیرد . 

سیستم ODWF (روغن اجباری در سیم پیچ و هسته – آب اجباری) :

در ترانسفورماتورهای با قدرت های بسیار بالا ، به منظور کاهش هرچه بیشتر دمای سیم   پیچ ها و هسته باید روغن را توسط پمپ ها ، با فشار و جهت مناسب از قسمت تحتانی تانک ترانسفورماتور به داخل سیم پیچ ها و هسته هدایت نمود . همچنین مشابه روش قبل ، با استفاده از رادیاتور و چرخش روغن در داخل آن و به واسطه تماس غیر مستقیم با آب خنک کنندگی ، دمای روغن به مقدار مورد نظر کاهش می یابد .



چهار شنبه 10 / 7 / 1391برچسب:, :: 10:45 ::  نويسنده : ahmad & saman
 

مقدمه:

ترانس های قدرت در کارخانه سازنده تست اساسی شده و با ولتاژ های در حد نامی و بیشتر و جریانهای بزرگ، تست میشوند اما پس از حمل ترانس به مقصد جهت بررسی و تائید صحت عملکرد ترانس و نداشتن هر نوع عیب در زمان بهره برداری ، تستهایی بروی آن در محل (پست) با وسایل اندازه گیری دقیق اما قابل حمل ونقل انجام میشود که به اختصار در زیر آمده است: 

1-     ۱-تست نسبت تبدیل :(RATIO)

 در این تست با دادن ولتاژ به اولیه یا ثانویه ترانس ، ولتاژ طرف مقابل را به دقت اندازه گیری می کنند.در ترانسهای قدرت کاهنده معمولا طرف اولیه را ولتاژ 380 ولت می دهند و در ثانویه ولتاژ بین 110 تا 180( در تراسهای 20/63 کیلو ولت )بسته به ترانس و تپ های آن اندازه گیری خواهد شد. 

2- تست پیوستگی تپ چنجر(TAP CONTINUE)

در این تست به اولیه ولتاژ 380 داده و در طرف ثانویه ولت مترهای آنالوگ دقیق قرار داده و در زمان تغییر تپ ها انحراف عقربه در هر سه فاز را بررسی کرده تا بقول معروف عقربه پس نزند . در زمان تغییر تپ میبایست به ترتیب زیر عمل نمود.

    1-2....1-2-3....2-3-4....3-4-5 و... یعنی یک پله پائین ودو پله بالا (در روند افزایشی تپ )

     

3- تست مقاومت عایقی : (MEGGER)

این تست را به کمک دستگاه میگر انجام می دهند و در زمانهای 15 ثانیه و60 ثانیه و5 دقیقه و 10 دقیقه اندازه گیری میکنند. اندازه گیری به قرار زیر است:

LV/HV  

HV +E/LV

LV+E/HV

در این تست سرهای اولیه اتصال کوتاه میشود و همینطور در ثانویه.(بهتر است در مرحله اول انجام شود)

  

4- تست جریان بی باری :(NO_LOAD)

 در این تست با دادن ولتاژ به اولیه و در صورتی که ثانویه مدار باز است جریان آنرا با آمپر متر دقیق اندازه گیری می کنیم . برای ثانویه هم به همین منوال است . در اتصال ستاره نسبت آمپر های سه فاز 1-0.8-1 و در اتصال مثلث 1-1-1.3 است. 

5- تست شار مغناطیسی : (flow)

در این تست با دادن ولتاژ تک فاز به سر های هر فاز و نول (در اتصال ستاره ) جریان هر فاز را اندازه گیری و ولتاژ سیم پیچ طرف مقابل را می خوانیم. 

6- تست گروه برداری :(VECTOR GROUP)

در این تست سرهای مشابه ،در یک فاز را اتصال کوتاه کرده (مثلا U-u) و ولتاژ سه فاز را تزریق میکنیم و ولتاژ را برای تمای سرها نسبت به هم میخوانیم. 

7- تست اتصال کوتاه :(SHORT CIRCUIT)

این تست را با اتصال کوتاه کردن در ثانویه انجام میدهیم و جریان در اولیه و ثانویه را پس از وصل ولتاژ 380 به اولیه قرائت و ثبت میکنیم. 

8- تست مقاومت اهمی :(RESISTANCE)

در این تست ولتاژ دی سی (مثلا 12 ولت ) را به سرهای هر فاز با سر نول در اتصال ستاره و هر دو فاز در اتصال مثلث تزریق کرده و جریان عبوری را اندازه گیری میکنیم.(این تست بهتر است در آخرین مرحله انجام گیرد) 

9- تست تانژانت دلتا :(TAN- DELTA)

 

در این تست با دستگاه مخصوص این تست حالتهای مختلف در ترانس را میشود بررسی نمود و ظرفیت خازنی بین هر نقطه از ترانس را اندازه گیری کرد.



چهار شنبه 9 / 7 / 1391برچسب:, :: 10:37 ::  نويسنده : ahmad & saman
 

امروزه روشنایی بسیاری از مکان ها توسط لامپ های فلئورسان صورت می گیرد. لزوم آشنایی با اتفاقات درون آن برای یک دانشجوی رشته ی برق بر کسی پوشیده نیست؛ در پایان این مقاله می دلیل داغ نشدن این لامپ ها نسبت به نوع نئونی را خواهید دانست. همچنین دلیل تاثیر بیشتر این لامپ ها نسبت به لامپ های نئونی را خواهید یافت.

نور:

برای یادآوری بد نیست درباره ی نور بنویسم. نور نوعی از انرژی است که می تواند از یک اتم خارج شود. این ازتعداد زیادی ذره های کوچک مثل بسته هایی که دارای انرژی و اندازه حرکت هستند ولی جرمی ندارند. این ذرات فوتون های نوری نام دارند و واحد های اساسی نور هستند.

اتم ها وفتی فوتون آزاد می کند که الکترون های آن ها برانگیخته شود. الکترون ها ترازهای انرژی متفاوتی دارند که به چند عامل وابسته است از جمله سرعت آن ها و فاصله ی آن ها از هسته. الکترون های با ترازهای متفاوت انرژی اوربیتال های مختلفی را اشغال می کنند. به طور کلی الکترون با انرژی بالاتر در اوربیتال دورتری نسبت به هسته قرار دارد.

وقتی اتمی انرژی بگیرد یا از دست بدهد، این با تغییر سرعت آن دیده می شود. دریافت انرژی (گرما برای مثال) ممکن است باعث شود به طور لحظه ای آن را  به یک اوربیتال بالاتر (دورتر از هسته) ببرد. الکترون  فقط برای کسری از ثانیه در اوربیتال بالاتر باقی می ماند و به اوربیتال اصلی خودش بر می گردد. البته با برگشت خود انرژی دریافتی را به صورت فوتون آزاد می کند که در برخی موارد فوتون نوری است.

طول موج نور گسیل شده به مقدار انرژی خارج شده بستگی دارد که این هم به مکان قرارگیری الکترون وابسته است. در نتیجه انواع گوناگون اتم ها فوتون های نوری متفاوتی را آزاد می کنند. به عبارت دیگر رنگ نور با نوع اتم برانگیخته شده مشخص می شود.

این مکانیزم اساسی کاری اکثر منابع نوری است.تفاوت اصلی این منابع در فرآیند برانگیختن اتم هاست. در یک منبع نور نئونی مثل لامپ های حبابی یا لامپ گازی اتم ها با گرما تحریک می شوند؛ در light stick  با واکنش شیمیایی این کار انجام پذیرد. در لامپ های فلئورسان از یکی از خلاقانه ترین سیستم ها در تحریک اتم ها استفاده می شود..

داخل لامپ ها:

المان اصلی لامپ فلئورسان یک لوله ی شیشه ای کاملا درز بندی شده است. این لوله حاوی مقدار اندکی جیوه و یک گاز نجیب (معمولا آرگون) است که در فشار خیلی کمی نگه داشته شده اند. با پودر فسفر داخل این لامپ را پوشانده اند. دارای دو الکترود است که در انتهای لامپ قرار دارند و به مدار الکتریکی متصل می شوند. تغذیه ی مدار الکتریکی آن ،که در ادامه بیشتر از آن خواهم گفت، با یک منبع تغذیه متناوب است.

وقتی لامپ را روشن می کنید، جریان از طریق مدار الکتریکی به داخل الکترودها شارش می کند. یک ولتاژ قابل توجهی دو سر الکترودها ایجاد شده لذا الکترون ها از یک انتها به طرف دیگر ( در داخل گاز)  می روند. این انرژی مقداری از جیوه را از حالت مایع به گازی تبدیل می کند. هنگام حرکت الکترون ها و اتم های باردار داخل لامپ، تعدادی با اتم های گازی جیوه برخورد می کنند. این برخورد اتم ها را برانگیخته می کند و الکترون ها را به تراز انرژی بالاتر می برد و همانگونه که در ابتدا گفته شد با بازگشت الکترون ها به اوربیتال اصلی فوتون های نوری از خود آزاد می کنند.

 گفتیم که طول موج فوتون گسیلی به نوع قرارگیری اتم بستگی دارد. الکترون های اتم جیوه به گونه ای قرار گرفته اند که بیشتر فوتون هایی با طول موج در رنج ماورای بنفش آزاد می کنند. این نور مرئی نیست، پس باید به نور مرئی تبدیل شود.

فلسفه ی وجود لایه ی فسفری داخل لامپ اینجا مشخص می شود. الکترون های فسفر هنگام قرار گرفتن در معرض فوتون های گسیلی از الکترون های اتم جیوه به اوربیتال بالاتر رفته و هنگام بازگشت فوتون نوری مرئی (سفید) آزاد می کنند. البته تمام انرژی دریافتی از فوتون های آزاد شده از اتم جیوه به صورت نور آزاد نمی شود بلکه مقداری از آن در برخورد با لایه ی فسفری به صورت گرما هدر می رود. کارخانه ها نور لامپ با انتخاب ترکیبات مختلف فسفر تغییر می دهند.

لامپ های نئونی مرسوم نیز مقدار قابل توجهی نور ماورای بنفش ساطع می کنند ولی آن ها آن را به نور مرئی تبدیل نمی کنند. لذا مقدار زیادی از انرژی بدون آنکه نقشی در روشنایی داشته باشد هدر می رود. لامپ فلئورسان نور ماورای بنفش خود را به کار می گیرد و موثرتر است. لامپ های نئونی انرژی بیشتری نیز نسبت به لامپ های فلئورسان به صورت گرما تلف می کنند. روی هم رفته یک لامپ فلئورسان 4 تا 6 برابر موثرتر از لامپ نئونی است.با این حال مردم در خانه هاشان از لامپ های نئونی استفاده می کنند چون نور ملایم تری ایجاد می کند. نوری با قرمزی بیشتر و آبی کمتر.

گفتیم تمام سیستم لامپ فلئورسان به جریان شارش شده داخل لامپ بستگی دارد. در قسمت بعدی خواهیم دید که لامپ فلئورسان چه چیزهایی برای تولید آن نیاز دارد.

آماده سازی گاز:       

جریانی که تا به حال صحبت آن بود از مدیومی گازی می گذرد و هادی های گازی با هادی های جامد در برخی موارد تفاوت دارند. در هادی جامد حامل های جریان الکترون ها هستند در حالی که در نوع گازی علاوه بر الکترون های آزاد، یون ها نیز در هدایت الکتریکی نقش دارند. برای ایجاد جریان در لامپ فلئورسان به دو چیز نیاز داریم:

1-   الکترون های آزاد و یون ها

2-   اختلاف پتانسیل بین دو سر لامپ

به طور کلی مقدار اندکی الکترون آزاد و یون در گاز وجود دارند زیرا اتم ها به طور طبیعی خنثی هستند. بنابراین گذراندن جریان از اغلب گازها دشوار است. پس اولین چیزی که باید تولید شود حامل جریان در دو الکترود است.

روشن کردن آن:

در طراحی کلاسیک لامپ فلئورسان از یک استارتر برای روشن سازی لامپ استفاده می شود. می توانید در دیاگرام پایینی ببینید این سیستم چگونه کار میکند.  

هنگامی که لامپ را روشن کنیم جریان از طریق مدار بایپس داخل الکترودها شارش می کند. این الکترودها رشته های (فیلامان های) ساده ای هستند که می توانید در لامپ نئونی ببینید. با عبور جریان فیلامان ها داغ شده و الکترون ها را از سطح آهنی خود رها کرده و به داخل لامپ می فرستد که گاز را نیز یونیزه می کند. حال ببینیم در استارتر چه می گذرد. استارتر مرسوم یک لامپ تخلیه ای کوچک است که از نئون یا گاز دیگری تشکیل شده است. این لامپ دارای دو الکترود است که روبروی هم قرار دارند. وقتی در آغاز ولتاژ دو سر آن بیفتد قوص الکتریکی ایجاد شده مسیر جریان ایجاد می شود.

این قوص به شکلی همانی است که در مقیاس بزرگ تر باعث روشن شدن لامپ فلئورسان می شود. از الکترودها ورقه ای از نوع بی متال است و هنگام گرم شدن خم می شود. آن مقدار گرمای ایجاد شده از جرقه کافیست تا این الکترود دا الکترود دیگر تماس برقرار کند. لذا دیگر جرقه ای ایجاد نشده و این باعث سرد شدن نوار بی متال شده و اتصال دو کنتاکت قطع می شود. هنگامی که مدار باز می شود فیلامان گاز داخل لامپ را یونیزه کرده و مدیومی، هادی الکتریسیته ایجاد کرده است.لامپ تنها به یک ضربه ی ولتاژ بین الکترودها نیاز دارد تا یک قوص الکتریکی ایجاد کند. این ضربه نوسط بالاست (چوک)، ترنسفورمری که در مدار قرار دارد، زده می شود.

وقتی جریان از مدار بایپس می گذرد، میدان مغناطیسی را در داخل چوک ایجاد می کند. این میدان توسط جریان در حال شارش حفظ می شود. باز شدن سوئیج استارت باعث قطع شدن جریان داخل چوک می شود انرژی ذخیره شده در میدان مغناطیسی به صورت ولتاژ بزرگی دو سر چوک آزاد می شود که میزان اختلاف ولتاژ لازم را برای تشکیل قوص الکتریکی درون لامپ فلئورسان را فراهم می کند و از این به بعد به جای عبور جریان از مدار بایپس، از داخل لامپ فلئورسان خواهد گذشت. این باعث حرکت الکترون های آزاد و برخورد آن ها با اتم ها و تشکیل فضایی از یون ها و الکترون های آزاد می شود (پلاسما). با برخورد الکترون ها با فیلامان ها، آن دو گرم باقی مانده و به گسیل الکترون به داخل پلاسما ادامه می دهند. تنها مشکل این نوع لامپ ها این است که برای روشن شدن چند ثانیه زمان لازم دارند. امروزه اغلب لامپ های فلئورسان به گونه ای طراحی می شوند که مینیمم زمان را برای روشن شدن بگیرند. در قسمت بعدی در باره ی این خواهم نوشت. عملکرد سریع امروزه طراحی لامپ های فلورسان به گونه ای است که زمان روشن شدن آن ها سریع باشد. این طراحی دارای اصولی مانند همان لامپ فلورسان دارای استارتر قدیمی است، ولی این دارای سوئیچ استارتر نیست و به جای آن بالاست لامپ، جریان را داخل دو الکترود به طور ثابت برقرار می کند. این شارش جریان به گونه ای تنظیم شده که بین دو الکترود اختلاف ولتاژ ایجاد می کند. وقتی لامپ فلورسان روشن می شود، هر دو فیلامان به سرعت داغ می شوند و شروع به گسیل الکترون ها می کنند که گاز درون لامپ را یونیزه می کند. وقتی که گاز یونیزه شد اختلاف ولتاژ بین الکترودها یک قوص الکتریکی ایجاد می کند. ذرات شارش کننده باردار (قرمز) اتم های جیوه (نقرهای) را تحریک کرده، فرآیند روشن شدن را آغاز میکنند. یک روش جایگزین که در استارت لحظه ای لامپ های فلورسان اعمال ولتاژ بسیار بالای اولیه به الکترودها است.

این ولتاژ به علت فزونی الکترون های روی سطح فیلامان (گرادیان ولتاژ بالا) یک تخلیه ی هاله ای (کرونا) را بوجود آورده و باعث یونیزاسیون گاز شده و به علت اختلاف ولتاژ بالا ،تقریبا به طور لحظه ای، باعث ایجاد جرقه بین الکترود ها می شود. بدون توجه به آنکه چگونه مکانیزم استارت تنظیم شده است نتیجه یکسان است: شارشی از جریان الکتریکی درون گاز یونیزه شده. این نوع از تخلیه ی گازی یک مشکل غریب کیفی نیز دارد: اگر جریان با دقت کنترل نشود، می تواند پیوسته زیاد شده و باعث منفجر شدن لامپ گردد. در قسمت بعدی در باره ی این مطلب روشن می شویم و می بینیم چگونه یک لامپ فلورسان به راحتی کار می کند. چوک (بالاست) تنظیم همان طوری که می دانیم هادی های گازی در مقایسه با نوع جامد به طور یکسان جریان را هدایت نمی کنند. یک تفاوت عمده ی آن ها مقاومت الکتریکی آن ها است. در هادی فلزی جامد مثل یک سیم، مقاومت در هر دمایی ثابت است و با طبیعت و اندازه ی آن هادی ارتباط دارد. در تخلیه ی گازی مانند در لامپ فلورسان، جریان باعث کاهش مقاومت می شود. این به دلیل آن است که وقتی تعداد بیشتری الکترون و یون داخل محیط خاصی شارش کنند، به اتم های بیشتری برخورد کرده که الکترون ها را آزاد کرده و باعث ایجاد ذرات باردار بیشتری می شود. اینگونه، جریان، مادامی که ولتاژ کافی (جریان ac خانگی ولتاژ زیادی دارد) وجود دارد، بالا می رود. اگر این جریان کنترل نشود، می تواند اجزای الکتریکی متنوعی را منفجر کند. چوک لامپ فلورسان برای کنترل این به کار می رود. این نوع ساده ی چوک را به طور کلی چوک مغناطیسی می نامند که رفتاری شبیه یک سلف دارد. سلف (القاگر) به طور کلی از یک کلاف سیم که می تواند روی یک فلز پیچانده شده باشد تشکیل شده است. می دانید که عبور جریان از یک سیم میدان مغناطیسی ایجاد می کند و قرار دادن سیم ها به طور حلقه های هم مرکز این میدان را فقویت می کند.

این نوع میدان نه تنها روی اطراف حلقه، بلکه روی خود حلقه نیز اثر می گذارد. افزایش جریان حلقه افزایش میدان را در پی دارد که باعث ایجاد ولتاژی دو سر حلقه می شود که با این افزایش مخالفت می کند. یعنی در جهتی که جریان بر عکس جریان فعلی باشد. به طور مختصر یک سلف در مدار با تعییرات جریان در خود مخالفت می کند. عناصر ترانسفورمر در چوک مغناطیسی اینگونه جریان را در لامپ فلورسان تنظیم می کنند. یک بالاست تنها می تواند سرعت تغییرات جریان را کم کند. نمی تواند آن را متوقف کند. ولی به دلیل این که جریان ما متناوب است مدام در حال عکس شدن است و بالاست تنها جلوی جریان افزایش شونده را برای زکان کوتاه و در جهت مشخص می گیرد. بالاست های مغناطیسی جریان الکتریکی را در فرکانس نسبتا کمی میزان می کنند که می تواند باعث یک فلیکر قابل توجهی شود. چوک ها ممکن است لرزش با فرکانس کم داشته باشند که منبع صدای وز وزی است که مردم از لامپ های فلورسان می شنوند. در طراحی بالاست های مدرن از الکترونیک پیشرفته برای تنظیم دقیق جریان عبوری از مدار الکتریکی استفاده شده است. وقتی با فرکانس بالاتری کار می کنند شما متوجه فلیکر یا صدای وز وز از یک بالاست الکترونیکی نمی شوید. لامپ های مختلف به طراحی بالاست ویژه ی خود نیاز دارند تا سطح ولتاژ و جریان مشخصی را بسته یه طرح های متفاوت لامپ، ایجاد کنند. لامپ های فلورسان در تمامی شکل ها و رنگ ها موجود هستند که تمامی آن ها طبق اصلی یکسان کار می کنند: جریان الکتریکی اتم های جیوه را تحریک میکند، که باعث آزاد کردن فوتون های ماورای بنفش می شود. این فوتون ها اتم های فسفر را تحریک کرده تا نور سفید رنگی منتشر کنند.




چهار شنبه 8 / 7 / 1391برچسب:, :: 10:24 ::  نويسنده : ahmad & saman
 

نحوه عملکرد خازن :

استفاده از خازنها به عنوان تولیدکننده بار راکتیو به منظور تنظیم و کنترل ولتاژ و جلوگیری از نواسانات قدرت در شبکه ها و تصحیح ضریب قدرت در مصرف کننده ها به علت ارزانی و سادگی سیستم آن، بسیار متداول است. در یک مصرف کننده الکتریکی غیراهمی بین ولتاژ و جریان، اختلاف فازی وجود دارد. جریانی که مصرف کننده از شبکه می کشد دو جزو اکتیو Ip و راکتیو Iq دارد. حال اگر خازنی را به دو سر بار، متصل کنیم جریانی از شبکه می کشد که در خلاف جهت جریان راکتیو بار است. لذا جریان راکتیوی که از شبکه کشیده میشود کاهش می یابد . در این شرایط زاویه جدید بین جریان و ولتاژ تقلیل مییابد. به عبارت دیگر در شرایط جدید، ضریب توان  cos φبزرگتر شده است. هر اندازه زاویه (φ) کوچکتر باشد متناسب با آن، قدرت اکتیو بیشتر و قدرت راکتیو کمتر خواهد شد.

مزایای استفاده از خازن :

خازنهای مورد استفاده در شبکه های برق دارای اثرات مختلفی هستند که از جمله میتوان به این موارد اشاره کرد:

 

ـ کاهش مولفه پس فاز جریان مدار

ـ تنظیم ولتاژ و ثابت نگهداشتن آن به منظور جلوگیری از وارد آمدن خسارت به دستگاهها

ـ کاهش تلفات سیستم (RxI2) به دلیل کاهش جریان

ـ کاهش توان راکتیو در سیستم به دلیل کاهش جریان

ـ بهبود ضریب توان شبکه

ـ به تعویق انداختن و یا به طور کلی حذف کردن هزینههای لازم برای ایجاد تغییرات در سیستم

ـ افزایش درآمد ناشی از افزایش ولتاژ و جبران بار راکتیو  

ساختمان و حفاظت خازن :

قسمت اکتیو خازن شامل دو ورقه نازک آلومینیوم جدا شده توسط لایه های کاغذ اشباع شده از روغن عایق و مایع های مصنوعی سنتتیک Synthetic مانند بنزیل است. گاه به جای کاغذ از

از موادی چون پلیپرپیل همچنین استفاده از فیوزهای HRC (High Rupture current) برای محافظت در مقابل اضافه جریان به عنوان مکمل حفاظت حرارتی متداول است. به منظور کاهش ولتاژ دو سرخازن پس از خارج شدن آنها از مدار از مقاومتهایی که به ترمینالهای خازن، بسته شده است استفاده می کنند. توان این مقاومتها متناسب با توان خازنها بین 30 تا 50 کیلو اهم است که میزان ولتاژ را در مدت سه دقیقه پس از قطع خازنها به میزان کم خطر (پایینتر از 75 ولت) کاهش میدهند. در حالتهای خاصی که خازن مستقیماً به سیم پیچهای الکتروموتور وصل می شود نیازی به مقاومت تخلیه نبوده و باید تا توقف کامل موتور از تماس با قسمتهای برقدار خازن، اجتناب شود. 

ملاحظات کلی در نصب خازنها :

محل نصب خازنها در یک سیستم برقی به مشخصات بار، بستگی دارد. برای بارهای متمرکز، خازنها در نزدیکی مرکز بار اما برای بارهای پراکنده، خازن در طول خط و مطابق با نیاز نصب می شود. خازنها با بدنه فلزی، اتصال زمین شده و یا اینکه توسط سیم خنثی، زمین می شوند. در موقع نصب سیم زمین به بدنه خازن باید توجه کرد که محل اتصال، فاقد رنگ بوده و از طرفی زنگ خوردگی نیز نداشته باشد. به دمای خازنها در هنگام کار، توجه خاصی مبذول میشود، چون اثر مهمی در عمر خازن دارد. به این دلیل در روی پلاک خازنها حداقل و حداکثر دمای مجاز کار خازن توسط سازندگان، حک میشود. چیدمان خازنها باید به ترتیبی باشد که تلفات گرمایی آنها توسط جابه جایی طبیعی هوا (کنوکسیون) و طرق دیگر، تهویه شود. در این خصوص باید گردش هوا در اطراف هر واحد به راحتی امکانپذیر باشد. به این دلیل در بدنه تابلوی خازنها، فضای مناسب برای امکان تبادل هوا با محیط بیرون تعبیه میشود. این مطلب خصوصاً برای واحدهایی که در ستونهایی روی هم قرار گرفته اند، اهمیت خاصی پیدا می کند. در مجموع توصیه می شود خازنها در مقابل تشعشع مستقیم خورشید محافظت شوند. علاوه بر موارد فوق بهتر است خازنها در محلی نصب و مورد بهره برداری قرار گیرند که دارای رطوبت زیاد نباشد. همچنین هوای محیطهای صنعتی که سبب خوردگی بدنه می شود از سایر عوامل مضر در طول عمر آنها محسوب می شود. کنتاکتورها مرتباً با قطع و وصل خود خازنها را به مدار، وارد و یا از مدار، خارج می کنند. لذا توصیه می شود از نوع مرغوب و با کیفیت، انتخاب و قدرت آنها حداقل 5/1 برابر قدرت خازنهای مربوط، باشد. خصوصاً سعی شود از کنتاکتورهایی استفاده شود که دسترسی به قطعات یدکی آنها آسان باشد. هر اتصال (کنتاکت) نامطمئن در مدار خازن ممکن است باعث ایجاد جرقه های کوچکی شود که به نوبه خود نوساناتی با فرکانس بالا بوجود خواهد آورد که این مساله گاه خازنها را بیش از حد، گرم کرده و تحت تنش حرارتی قرار می دهد. از این رو بازدید منظم و تعویض به موقع پلاتین کنتاکتورها توصیه می شود. در کل، بهتر است علاوه بر بازدیدهای  معمول، بانک خازنی ، هر سه ماه یکبار توسط افراد با صلاحیت فنی مورد بازرسی و سرویس قرار گیرد.  

 تعیین ضریب توان (cos φ)

روشهای تعیین میزان ضریب توان عبارتند از:

الف ـ توسط دستگاه ضریب توانسنج: در این حالت ضریب توان مستقیماً قابل خواندن است.

ب ـ با استفاده از مقدار مصرف ماهانه:  ضریب توان در این روش با تقسیم توان راکتیو مصرفی به توان اکتیو مصرف شده در یک دوره کنتورخوانی، قابل محاسبه است.

ج ـ به کمک سنجش تعداد دور کنتورهای اکتیو و راکتیو:  در این روش تعداد دور کنتورها در یک زمان معین، شمارش شده و سپس با داشتن عدد ثابت کنتورها ( تعداد دور به ازای یک کیلووات ساعت یا یک کیلووار ساعت) ضریب توان متوسط محاسبه میشود.

برای دقت در اندازه گیری، آزمایش چندبار، تکرار و در نهایت حد وسط، محاسبه و ملاک عمل قرار میگیرد.  

محاسبه توان خازن :

پس از مشخص شدن مقدار ضریب توان موجود، محاسبه خازن برای جبران توان راکتیو و اصلاح ضریب توان، انجام میشود. معمولاً این جبرانسازی برای ضریب قدرت بین 85/0 تا 95/0 انجام میشود. از جبرانسازی ضریب قدرت بیش از 95/0 باید اجتناب شود. زیرا در این شرایط علاوه بر نیاز به میزان قابل ملاحظه ای از خازن برای تامین قدرت راکتیو، هادیها به دلیل عبور جریان زیاد راکتیو تحت تنش قرار گرفته و نیز ممکن است در شبکه مصرف کننده افزایش ولتاژ نامطلوبی ایجاد شود. روشهای متداول برای محاسبه توان خازن مورد نیاز به این شرح است:

الف ـ روش ضریب قدرت تصحیح شده: در این روش با استفاده از جدول و به کمک فرمول f ×p = Φc توان خازن مورد نظر، محاسبه میشود. مقدار cos Φ1 ضریب قدرت فعلی سیستم است که قبلاً روش محاسبه آن ذکر شد وcosΦ2ضریب قدرت مورد انتظار است.

 : Φc توان خازن مورد نیاز [KVAR]

P   : توان اکتیو مصرفکننده [KW]

f   : ضریب تبدیل (که از جدول به دست میآید)

ب - روش استفاده از نمودار:

در این روش به کمک نمودار و با معلوم بودن توان اکتیو مصرف کننده و ضریب توان مورد انتظار، مقدار توان خازن مورد نیاز مشخص می شود.  

رگولاتور تصحیح ضریب قدرت :

از آنجا که هدف از نصب خازن، حذف بار راکتیو متغیر مصرف کننده در هر شرایط است، برای کنترل آن از رگولاتور تصحیح ضریب قدرت استفاده می شود. رگولاتور، ترتیب به مدار آمدن و یا از مدار خارج شدن خازنها در یک بانک خازنی را تعیین کرده و متناسب با بار راکتیو مورد نیاز، فرمان قطع و وصل به کنتاکتورها صادر می کند. از جمله نکات قابل توجه در رگولاتورها تنظیم مربوط به نسبت (C/K) است. مقدار (C/K) عبارت است از نسبت تبدیل توان اولین پله خازن (C)به نسبت تبدیل ترانسفورماتور جریان (K) متصل به رگولاتور. لذا پس از مشخص شدن توان راکتیو مورد نیاز باید آن را به نسبت مصارفی که در هر لحظه وارد مدار میشود پله بندی و رگولاتور مناسب با این مجموعه را انتخاب کرد . نحوه پله بندی خازنها در مشخصات فنی رگولاتورها ذکر میشود و بطور عمومی به یکی از سه روش زیر و متناسب با رفتار بار راکتیو مصرف کننده انتخاب میشود:

(1):1:1:1 …

(2):1:2:2 …

(3):1:2:4:8 …

از مشخصه های مهم دیگر رگولاتورها مراحل عملکرد آنهاست. بعنوان نمونه در رگولاتور نوع 5/3 تعداد سه عدد خازن در پنج حالت مختلف میتوانند در مدار گیرند.

بنابراین برای مقدار معینی از توان راکتیو خازنی، انتخابهای متنوعی می تواند صورت گیرد که میزان بار راکتیو که در هر مرحله وارد مدارد میشود و نیز نوع رگولاتور عامل موثر در طراحی بانکهای خازنی خواهد بود.

نتیجه گیری :

 

امروزه خازنها به عنوان تصحیح کننده ضریب قدرت و تغذیه کننده توان راکتیو از اهمیت خاصی برخوردارند. وجود خازن نه تنها برای اصلاح ضریب قدرت شبکه سراسری برق ناشی از اندوکتانس خطوط انتقال انرژی و ترانسفورماتورها مفید است، بلکه نصب آن برای مصرف کنندگان فشار ضعیف، ضروری است. اگر چه هزینه های اولیه سرمایه گذاری برای نصب بانکهای خازنی به نظر گران میرسد ولی در ظرف مدت 18 تا 30 ماه هزینه های فوق از محل صرفه جویی ضرر و زیان مندرج در صورتحسابهای دورهای مستهلک تصویه خواهد شد. در نتیجه توجیه و تشویق مشترکان برای نصب خازن، بهره وری دوسویه است که منافع حاصل از آن به نفع مشترکان و نیز شرکتهای برق خواهد بود.

Poly Propylene) نیز استفاده می کنند. این ورقه ها چند دور لوله شده و یک واحد خازن را تشکیل می دهند، یا تعدادی از این لایه ها روی یکدیگر قرار داده شده و آنها را مجموعاً در داخل یک مخزن مملو از مایع عایق، جاسازی کرده و دو انتهای خازن از طریق مقره به محیط خارج هدایت می شود. برای حفاظت حرارتی بانکهای خازنی از بیمتال و رله های حرارتی که به بوبین کنتاکتور خازنها فرمان قطع می دهند استفاده می شود. تنظیم این رله ها در حد 43/1 برابر جریان نامی خازن است.




چهار شنبه 7 / 7 / 1391برچسب:, :: 10:32 ::  نويسنده : ahmad & saman
 

مقدمه : 

یکی از پدیده هایی که در ارتباط با تجهیزات برقدار از جمله خطوط انتقال فشار قوی مطرح می شود، کرونا است. میدان الکتریکی در نزدیکی ماده رسانا می تواند به حدی متمرکز شود که هوای مجاور خود را یونیزه نماید. این مسئله می تواند منجر به تخلیه جزئی انرژی الکتریکی شود، که به آن کرونا می گویند. coronaعوامل مختلفی ازجمله ولتاز، شکلو قطر رسانا، ناهمواری سطح رسانا، گرد و خاک یا قطرات آب می تواند باعث ایجادگرادیان سطحی هادی شود که در نهایت باعث تشکیل کرونا خواهد شد. در حالتی که فاصله بین هادی ها کم باشد، کرونا ممکن است باعث جرقه زدن و اتصال کوتاه گردد. بدیهی است که کرونا سبب اتلاف انرژی الکتریکی و کاهش راندمان الکتریکی خطوط انتقال می گردد. پدیده کرونا همچنین سبب تداخل در امواج رادیویی می شود. O2 و یا N2 نرم خواهد بود به این معنی که الکترون ازمولکول هوا دور شده و به آن انرژی نمی دهد. به عبارت دیگر اگر شدت میدان الکتریکیاز یک مقدار بحرانی معین بیشتر باشد، هر الکترون آزاد در این میدان سرعت کافی بدستمی آورد به طوری که برخوردش با مولکول هوا غیر الاستیک خواهد بود و انرژی کافی بدستمی آورد که به یکی از مدارهای الکترون های دو اتم موجود در هوا برخورد کند. اینپدیده یونیزاسیون نام دارد و مولکولی که این الکترون از دست می دهد تبدیل به یکیون مثبت می شود. الکترون نخستین که بیشتر

سرعتش را در برخورد از دست داده والکترونی که مولکول هوا را رانده است هر دو در میدان الکتریکی شتاب می گیرند و هرکدام از آنها در برخورد بعدی توانایی یونیزه کردن یک مولکول هوا را خواهند داشت. بعد از برخورد دوم 4 الکترون به جلو می آیند و به همین ترتیب تعداد الکترون ها بعداز هر برخورد دو برابر می شود. در تمام این مدت الکترون ها به سمت الکترود مثبت میروند و پس از برخوردهای بسیار تعدادشان بطور چشم گیری افزایش می یابد.  

این مسئله فرایندی است به وسیله آن بهمن الکترونی ایجاد می شود، هر بهمن با یک الکترون آزادکه در میدان الکترواستاتیک قوی قرار دارد آغاز می شود. شدت میدان الکترواستاتیکاطراف هادی همگن نیست.  

ماکزیموم شدت آن در سطح هادی و میزان شدت با دور شدن از مرکزهادی کاهش می یابد. بنابراین با افزایش ولتاژ هادی در ابتدا تخلیه الکتریکی فقط درسطح بسیار نزدیک ان رخ می دهد. در نیمه مثبت ولتاژ الکترون ها به سمت هادی حرکت میکنند و هنگامیکه بهمن الکترونی ایجاد شد بطرف سطح هادی شتاب می گیرند. در نیمهمنفی، بهمن الکترونی از سطح هادی به سمت میدان ضعیف تر جاری می شود تا هنگامی که میدان آنقدر ضعیف شود که دیگر نتواند الکترون ها را شتاب دهد تا به سرع یونیزاسیونبرسند.  

یون های مثبت باقی مانده در بهمن الکترونی به طرف الکترود مثبت حرکت میکنند. با این وجود به دلیل جرم زیادشان که 50000 برابر جرم الکترون است بسیار کندحرکت می کنند. با داشتن بار مثبت این یون ها، الکترون جذب کرده و هرگاه یکی از آنهابتواند الکترون جذب نماید دوباره تبدیل به مولکول هوای خنثی می شود.  

سطح انرژی یکیون خنثی کمتر از یون مثبت مربوطه است و در نتیجه با جذب الکترون مقداری انرژی ازمولکول منتشر می شود. انرژی آزاد شده درست به اندازه انرژی نخستین است که لازم بودبرای جدا کردن الکترون از مولکول استفاده گردد. این انرژی بصورت موج الکترومغناطیسمنتشر می شود و برای مولکول های O2 و N2 در طیف نور مرئی قرار دارد

تعریف کرونا

تخلیه الکتریکی ایجاد شده به علت افزایش چگالی میدان الکتریکی ،کرونا نام دارد. در حالی که این تعریف بسیار کلی است و انواع پدیده کرونا را شامل می شود.

ولتاژ بحرانی

گرادیان ولتاژی که سبب شکست الکتریکی در عایق شده و به ازای آن،عایق خاصیت دی الکتریک خود را از دست می دهد، گرادیان ولتاژ بحرانی نامیده می شود. همچنین ولتاژی را که سبب ایجاد این گرادیان بحرانی می شود ولتاژ بحرانی مینامند.

ولتاژ مرئی کرونا

هرگاه ولتاز خط به ولتاژ بحرانی برسد، یونیزاسیون در هوای مجاورسطح هادی شروع می شود. اما در این حالت پدیده کرونا قابل روئیت نمی باشد. برای مشاهده کرونا، سرعت ذرات الکترون ها در هنگام برخورد با اتم ها و مولکول ها بایدبیشتر باشید یعنی ولتاژ بالاتری نیاز است.

ماهیت کرونا

هنگامی که میدان الکتریکی سطح هادی از ولتاژ بحرانی بیشتر شده باشد، بهمن الکترونی بوجود

خواهد آمد که بوجود آورنده تخلیه کرونای قابل روئیت درسطح هادی است. همواره تعداد کمی الکترون آزاد در هوا به علت مواد رادیو اکتیو موجوددر سطح زمین و اشعه کیهانی، وجود دارد. زمانی که هادی در هر نیمه از سیکل ولتاژمتناوب برقدار می شود، الکترون های هوای اطراف سطح آن بوسیله میدان الکترواستاتیکشتاب پیدا می کند. این الکترون ها که دارای بار منفی هستند در نیمه مثبت به طرفهادی شتاب پیدا می کنند و در نیمه منفی از آن دور می شوند. سرعت الکترون آزاد بستگیبه شدت میدان الکتریکی دارد. 


بهترین زمان برای مشاهده کرونا

کرونا در فضای آزاد بعد از یک روز بارانی تا قبل از زمانی که سطوحبرقدار خشک شده باشند قابل مشاهده است. پس از خشک شدن کرونا مشاهده نمی شود. نقاطدر معرض کرونا با رطوبت خود را بهتر نشان می دهند. باد می تواند فعالیتکرونا راکاهش دهد. کرونا می تواند در اثر قندیل هم ایجاد شود. موتورهای الکتریکی، ژنراتورهاو تابلو های داخلی می توانند کرونای شدید تری ار وسایل خارجی پست ها ایجاد نمایند. تشکیل هوای یونیزه در فضای بسته و عدم حرکت هوا پدیده کرونا را تسریع می کند وولتاژهایی را ایجاد می کند که در ان کرونا رخ دهد موتورها و ژنراتور ها می توانندبا توجه به وجود فن های خنک کننده شان هوایی با فشار های گوناگون ایجاد کنند

آشکار شدن کرونا

صدای هیس مانند قابل شنیدن، ازن، اسید نیتریک (در صورت وجود رطوبتدر هوا ) که بصورت گرد کدر سفید جمع می شود و نور (قوی ترین تشعشع در محدوده ماوراءبنفش و ضعیف ترین ان در ناحیه نور مرئی و مادون قرمز که می تواند با چشم غیر مسلحنیز در تاریکی با دوربین های ماوراء بنفش دیده شود) از نشانه های کرونای الکتریکیمی باشند. تخلیه بار ناشی از بهمن الکترونی در آزمایشگاه، به سه طریق مختلف مشاهدهمی شود. بهترین راه تشخیص کرونای مرئی است که به صورت نور بنفش از نواحی با ولتاژاضافی ساطع می شود.

دومین راه شناسایی کرونای صدادار است که در حالی که شبکه موردمطالعه در ولتاژی بالاتر از آستانه کرونا باشد صدایی به صورت هیس هیس قابل شنیدناست. امواج صوتی تولید شده به وسیله اغتشاشات موجود در هوای مجاور محل تخلیه بار،به وسیله حرکت یون های مثبت به وجود می آیند.

سومین و مهمترین راه مشاهده از نظر ظرکت برق اثرات الکتریکی استکه منجر به اختلال رادیویی می شود. حرکت الکترون ها (بهمن الکترونی) سبب ایجادجریان الکتریکی و در نتیجه به وجود آمدن میدان مغناطیسی و الکترواستاتیکی درمجاورت ان می شود. شکل گیری سریع و انی بودن این میدان ها ولتاز فرکانس بالایی درنزدیک آنتن رادیویی القا می کند و منجر به اختلال رادیویی می شود

انواع کرونا

سه نوع مختلف از کرونا وجود دارد که در نمونه تست EHV درآزمایشگاه مشخص می شود: تخلیه پر مانند، تخلیه قلم مویی و تخلیه تابشی.تخلیه پرمانند، دیدنی ترین آنهاست و علت نامگذاری هم این است که به شکل پر تخلیه می شود. زمانیکه در تاریکی مشاهده شود دارای تنه متمرکزی حول هادی است که قطر این هالهنورانی بنفش رنگ از چند اینچ در ولتازهای پایین تر تا یک فوت و بیشتر در ولتازهایبالا تغییر می کند. بروز آثار صوتی این نوع به صورت هیس هیس بوده و به راحتی توسطیک ناظر با تجربه تشخیص داده می شود. در تخلیه قلم مویی پرچمی از نور به صورت شعاعیاز سطح هادی خارج می شود. طول این تخلیه ها از کمتر از یک اینچ در ولتاژ های پایینتا 1 تا 2 اینچ در ولتاژهای بالا تغییر می کند. صدای همراه با ان صدایی در پسزمینه مانند صدای سوختن است. تخلیه تابشی نور ضعیفی دارد که به نظر می رسد سطح هادیرا در بر گرفته است ولی مانند نوع قلم مویی برجسته نیست. همچنین ممکن است در نواحیبحرانی سطح عایق ها در زمان بالا بودن رطوبت رخ دهد. معمولا صدایی با این نوع تخلیه همراه نیست.



سه شنبه 6 / 7 / 1391برچسب:, :: 19:39 ::  نويسنده : ahmad & saman
شما در این بخش میتوانید با دانلود کردن فایل مربوطه، تصاویری از مهمترین یراق آلات مورد استفاده در شبکه های توزیع شامل :

(انواع کلمپ های سرخط- آویزی – انتهایی ، آچار های مخصوص L و F ،ارتباط دهنده ها،خودنگهدارها ،انواع مفصل ، جمپر ،سرکابل،همچنین انواع ترمینال ها،بستها،کابل شو،راک،پیچ دم خوکی و .....)

را همراه با توضیحات آن مشاهده کنید.

از آن جایی که تصاویر دارای کیفیت بالا و حجم قابل توجهی است فایل آن به صورت Pdf آورده شده تا براحتی و در زمان کمی قابل دانلود باشد. (تصاویر قابل کپی برداری می باشد.)

 

زبان : فارسی
نوع فایل: PDF
حجم: 3.92 مگا بایت
تعداد صفحات: 14 صفحه

 



سه شنبه 5 / 7 / 1391برچسب:, :: 10:51 ::  نويسنده : ahmad & saman
 

در این مطلب با : 

* نحوه طبقه بندی انواع تیرهای برق- کلاس بندی و علامت گذاری روی پایه های بتونی و چوبی در شبکه برق 20 و 4/0 کیلو ولت

* چگونگی ساخت دکلهای فلزی اسکلتی و لوله ای (تلسکوپی)

* انواع پایه های بتنی مسلح و نحوه کاربرد آنها

* فونداسیون- گود برداری برای نصب پایه ها و تیر های برق شبکه

* نحوه محاسبه وزن و نیروی کششی پایه ها و ....

 آشنا خواهید شد.

        

زبان : فارسی
نوع فایل: PDF
حجم: 120 کیلو بایت
تعداد صفحات: 21 صفحه



سه شنبه 4 / 7 / 1391برچسب:, :: 10:4 ::  نويسنده : ahmad & saman

وقتی‌ هدف‌، بهینه‌سازی‌ ابعاد و وزن‌ دکلهای‌ خطوط انتقال‌ نیرو باشد، طبیعی‌ است‌عوامل‌ مختلفی‌ از جمله‌ مشخصه‌ هادیها، آرایش‌ فازها و فاصله‌ آنها تا دکلها در این‌ امردخالت‌ دارد.
در این‌ نوشتار ضمن‌ بررسی‌ عوامل‌ مختلف‌ در محاسبه‌ فواصل‌ فازی‌، تأثیر آنها درطراحی‌ دکلهای‌ موجود نیز مورد بحث‌ و بررسی‌ قرار گرفته‌ است‌.

گرچه‌ نقش‌ هر یک‌ از عوامل‌ جوی‌ و محیطی‌، بسیار مهم‌ است‌، اما فاصله‌هادیها تا بدنه‌ یا بازوی‌ برجها، نقش‌ مؤثرتری‌ را در طراحی‌ ابعاد و وزن‌ دکلها یا برجهای‌خطوط انتقال‌ نیرو دارد.

همچنین‌ ابعاد دکلهای‌طراحی‌ شده‌ در کشور ایران‌ با چند نمونه‌ از دکلهای‌ مربوط به‌ خطوط انتقال‌ نصب‌ شده‌ درچند کشور خارجی‌ مقایسه‌ شده‌ است‌. نتایج‌ این‌ بررسیها نشان‌ می‌دهد در طراحی‌ دکلهای‌ خطوط انتقال‌ نیرو، فواصل‌ فازها از بدنه‌ دکلها و از یکدیگر، بیشتر از حد مورد نیازاست‌ که‌ این‌ امر نشانگر در نظر گرفتن‌ ضریب‌ اطمینان‌ بالا بوده‌ که‌ موجب‌ افزایش‌ وزن‌آنها و در نتیجه‌ قیمت‌ خطوط انتقال‌ نیرو می‌شود.

گرچه‌ ابعاد و وزن‌ دکلها به‌ عوامل‌ بسیارمتعددی‌ از جمله‌

فاصله‌ اسپن‌، سرعت‌ و زاویه‌وزش‌ باد، ضخامت‌ یخ‌، وزن‌ و قطر هادی‌ وعوامل‌ دیگر وابسته‌ است‌ اما در یک‌ شرایطمعین‌، فواصل‌ فازها یکی‌ از عوامل‌ مهم‌ ومؤثر در طراحی‌ دکلهای‌ خطوط انتقال‌ نیرواست‌. با افزایش‌ فاصله‌ هادیها از بدنه‌ یا بازوی‌ دکلها، نیروی‌ تحمیلی‌ بر آنها تغییر می‌کند که‌ این‌ امر سبب‌ افزایش‌ ابعاد، وزن‌ وقیمت‌ آنها می‌شود.

توجه‌ به‌ این‌ بخش‌ از طراحی‌، می‌تواند عامل‌ مؤثری‌ در کاهش‌هزینه‌های‌ مربوط به‌ ساخت‌ دکلها و در نتیجه‌سرمایه‌گذاری‌ خطوط انتقال‌ نیرو باشد .بررسی‌ فواصل‌ فازی‌ در مراجع‌ مختلف‌نشان‌ می‌دهد با وجود مدلها و روابط متعددی‌ که‌ برای‌ محاسبه‌ فواصل‌ فازی‌ ارایه‌ شده‌ است‌، در عمل‌ فواصل‌ فازها حتی‌ در شرایط محیطی‌ یکسان‌، برابر نیست‌ که‌ وجود دکلهای‌ متنوع‌ با ابعاد و وزن‌ مختلف‌ درشبکه‌های‌ برق‌رسانی‌ ایران‌ مؤید این‌ مطلب‌ است‌. لذا با توجه‌ به‌ اهمیت‌ فواصل‌ فازها وجای‌گذاری‌ هادیها در طراحی‌ دکلها، پهنای ‌باند عبور و در نتیجه‌ سرمایه‌گذاری‌ خطوط انتقال‌ نیرو، در این‌ نوشتار مورد بحث‌ و بررسی‌قرار می‌گیرد.

معیار انتخاب‌ فواصل‌ فازی‌
در خطوط انتقال‌ نیرو فاصله‌ فازها تا بدنه‌برجها یا فاصله‌ فاز تا فاز به‌ عوامل‌ متعددی‌ ازجمله‌ اضافه‌ ولتاژها، شرایط جوی‌ و محیطی‌ وسایر مشخصات‌ فنی‌ خطوط، وابسته‌ است‌ امابه‌ هر حال‌ دامنه‌ تغییرات‌ آن‌ قابل‌ محاسبه‌است‌. از طرفی‌ با توجه‌ به‌ این‌ که‌ ممکن‌ است‌ اضافه‌ ولتاژها یا پدیده‌های‌ جوی‌ رخ‌ دهد، لذافاصله‌ فازها می‌تواند با پذیرش‌ احتمال‌ کم‌ یازیاد برای‌ وقوع‌ جرقه‌ در فواصل‌ هوایی‌،افزایش‌ یا کاهش‌ یابد. برای‌ روشن‌ شدن‌مطلب‌، به‌ تأثیرگذاری‌ عوامل‌ مؤثر و مختلف‌در این‌ زمینه‌ به‌ طور اختصار اشاره‌ می‌شود.

الف‌) عوامل‌ موثر در فواصل‌ فازی‌
در محاسبه‌ حداقل‌ فاصله‌ فازها تا بدنه‌دکلها عوامل‌ متعددی‌ دخالت‌ دارد که‌ از جمله‌می‌توان‌ به‌ این‌ موارد اشاره‌ کرد:
- ولتاژ خط انتقال‌
- وزن‌ و قطر هادیها
- قطر یخ‌ روی‌ هادیها
- درجه‌ حرارت‌ هادیها
- سرعت‌ و زاویه‌ وزش‌ باد
- شرایط جوی‌ و محیطی‌ مسیر
- فلش‌ هادیها
- فاصله‌ پایه‌ها
- قابلیت‌ اطمینان‌ یا درصد ریسک‌پذیری‌.
این‌ عوامل‌ عمدتا در نزدیک‌سازی‌فاصله‌ فازها به‌ بدنه‌ دکلها در شرایط وزش‌ باددخالت‌ دارند. اما در هر شرایطی‌، حداقل‌فاصله‌ فازها تا بدنه‌ دکلها در هر جهت‌ نباید ازرقمی‌ که‌ از طریق‌ اضافه‌ ولتاژهای‌ ناشی‌ از کلیدزنی‌ یا صاعقه‌ به‌ وجود می‌آیند کمترباشد. شایان‌ ذکر است‌ که‌ در برخی‌ از مراجع‌،سرعت‌ باد ماکزیمم‌ در زمان‌ وقوع‌ حداکثراضافه‌ ولتاژ، منظور نمی‌شود.

ب‌) حداقل‌ فاصله‌ افقی‌ هادی‌ تا دکل‌
در جای‌گذاری‌ هادیها در روی‌ دکلها بایددقت‌ شود که‌ فاصله‌ هادیها با بدنه‌ یا بازوی‌دکلها در هیچ‌ قسمت‌، از مقدار مشخصی‌،کمتر نباشد این‌ فاصله‌ تابعی‌ از مقدار اضافه ‌ولتاژهای‌ ناشی‌ از صاعقه‌ و کلیدزنی‌ و درصد ریسک‌پذیری‌ است‌. برای‌ محاسبه‌ حداقل‌فاصله‌ هوایی‌ یا فاصله‌ هادی‌ تا بدنه‌،می‌توان‌ از این‌ روابط استفاده‌ کرد:
رابطه‌ (2) نیز حداقل‌ فاصله‌ هوایی‌ از دیدگاه ‌اضافه‌ ولتاژ ناشی‌ از صاعقه‌ را نشان‌ می‌دهد:
در این‌ رابطه‌ داریم‌: LS - حداقل‌ فاصله‌ هوایی‌ بر مبنای‌ اضافه‌ولتاژ کلیدزنی‌ به‌ متر
VS - اضافه‌ ولتاژ ناشی‌ از کلیدزنی‌ به‌کیلوولت‌
LL - حداقل‌ فاصله‌ هوایی‌ بر مبنای‌ اضافه‌ولتاژ صاعقه‌ به‌ متر
VL - اضافه‌ ولتاژ ناشی‌ از صاعقه‌ به‌ کیلوولت‌
برای‌ محاسبه‌ حداقل‌ فاصله‌ هوایی‌ درهر سطح‌ از ولتاژ لازم‌ است‌، با توجه‌ به‌ مقادیراضافه‌ ولتاژهای‌ ناشی‌ از کلیدزنی‌ و صاعقه‌،حداقل‌ فاصله‌ هوایی‌ محاسبه‌ شود.
ضمنا برای‌ سهولت‌ مقایسه‌ و محاسبه‌،حداقل‌ فاصله‌ هوایی‌ مجاز فازها تا بدنه‌دکلها با توجه‌ به‌ روابط (1 و 2) و برحسب‌مقادیر مختلفی‌ از اضافه‌ ولتاژهای‌ صاعقه‌ وکلیدزنی‌ نیز محاسبه‌ شده‌ است‌. حداقل‌ فاصله ‌هوایی‌، تنها به‌ مقدار ولتاژ بستگی‌ ندارد، بلکه‌تابعی‌ از نوع‌ اضافه‌ ولتاژ نیز است‌. به‌ عبارت‌دیگر این‌ مطلب‌ نشان‌ می‌دهد که‌ ولتاژشکست‌ هوا ضمن‌ این‌ که‌ به‌ قدر مطلق‌ ولتاژبستگی‌ دارد، به‌ شکل‌ موج‌ آن‌ نیزوابسته‌ است‌به‌ عبارت‌ دیگر برای‌ مقادیر یکسانی‌ از اضافه ‌ولتاژهای‌ صاعقه‌ و کلیدزنی‌، حداقل‌ فاصله‌هوایی‌ مجاز یا فواصل‌ فازها از یکدیگر (یا بابدنه‌ دکلها) برای‌ اضافه‌ ولتاژ کلیدزنی‌ بیشتراز اضافه‌ ولتاژ ناشی‌ از صاعقه‌ است‌.

فاصله‌ فاز تا بدنه‌ دکل‌
در صورتی‌ که‌ زنجیره‌ مقره‌ها در اثر وزش‌باد دچار نوسان‌ نشود، حداقل‌ فاصله‌ فاز تا بدنه‌ دکلها را می‌توان‌ معادل‌ L در نظر گرفت‌که‌ مقدار آن‌ برابر LL یاLS (هر کدام‌ بزرگترباشد) است‌. اما در عمل‌ وزش‌ باد سبب‌ انحراف‌ زنجیره‌ مقره‌ها به‌ سمت‌ دکلهامی‌شود که‌ این‌ اقدام‌ موجب‌ نزدیک‌ شدن‌فازها به‌ بدنه‌ یا بازوی‌ دکلها می‌شود. لذا اگر هدف‌، تعیین‌ محل‌ مناسب‌ برای‌ نصب‌زنجیره‌ مقره‌ها باشد باید این‌ مطلب‌ مدنظرقرار گیرد.
شمای‌ کلی‌ بخشی‌ از دکل‌ راهمراه‌ با زنجیره‌ مقره‌ها نشان‌ می‌دهد. در این‌شکل‌ fزاویه‌ انحراف‌ زنجیره‌ مقره‌ها، dhمیزان‌ پیشروی‌ افقی‌ هادیها به‌ سمت‌ دکل‌ و dvفاصله‌ هادی‌ تا بازوی‌ دکل‌ در حالت‌انحراف‌ زنجیره‌ مقره‌ها و Lin طول‌ زنجیره‌مقره‌هاست‌. با توجه‌ به‌ شکل‌ فوق‌ میزان ‌پیشروی‌ زنجیره‌ مقره‌ها به‌ سمت‌ بدنه‌ دکل‌ رامی‌توان‌ از رابطه‌ 3به‌ دست‌ آورد.
با توجه‌ مقدار dh حداقل‌ فاصله‌ فاز تا بدنه‌(D) به‌ دست‌ می‌آید.
وزش‌ باد علاوه‌ بر این‌ که‌ فاصله‌ افقی‌ هادیهاتا دکل‌ را کاهش‌ می‌دهد، سبب‌ کاهش‌فاصله‌ عمودی‌ هادیها تا بازوی‌ دکل‌ (dv) نیزمی‌شود. لذا در انتخاب‌ طول‌ زنجیره‌ مقره‌هاباید دقت‌ شود که‌ هیچ‌ وقت‌ مقدار dv از Lکمتر انتخاب‌ نشود. اما اگر مقدار dv از حدمجاز کاهش‌ یابد طول‌ زنجیره‌ مقره‌ها باید باتوجه‌ به‌ رابطه‌ (6) اصلاح‌ شود:
با جای‌گذاری‌ مقدار معادل‌ Lin در رابطه‌ (5)مقدار D به‌ صورت‌ روابط (7) و (8) محاسبه‌ می‌شود.
زاویه‌ انحراف‌ زنجیره‌ مقره‌ها را می‌توان‌ ازرابطه‌ (9) به‌ دست‌ آورد. در این‌ رابطه‌ Vسرعت‌ وزش‌ باد برحسب‌ متر بر ثانیه‌، dقطرهادی‌ بر حسب‌ متر، w وزن‌ یک‌ متر از طول‌هادی‌ برحسب‌ کیلوگرم‌ و Sh و Svاسپنهای‌ بادو وزن‌ است‌.
همان‌ طور که‌ ملاحظه‌ می‌شود فاصله‌ هادیهاتا بدنه‌ دکلها به‌ سرعت‌ باد، شرایط آب‌ وهوایی‌ منطقه‌، نوع‌ هادی‌ و فاصله‌ دکلهاوابسته‌ است‌. به‌ عبارت‌ دیگر هر چه‌ زاویه‌انحراف‌ زنجیره‌ مقره‌ها بیشتر باشد فاصله ‌فازها باید زیادتر انتخاب‌ شود. در شرایطمتعارف‌، مقدار tanf در محدوده‌ 4/0 تا 6/0 تغییر می‌کند، لذا در این‌ حالتها مقدار Kدرمحدوده‌ 4/1 تا 6/1تغییر می‌کند (اگر زنجیره‌مقره‌ها به‌ صورت‌ V شکل‌ نصب‌ شود K حدود1/1 تا 2/1 خواهد بود) لذا با توجه‌ به‌ مقادیراضافه‌ ولتاژهای‌ مندرج‌ در جدول‌ (1) و در نظرگرفتن‌ K مساوی‌ 1/1 و 1/4 برای‌ آرایش‌ Vو I مقره‌ها، حداقل‌ فاصله‌ هادیها تا بدنه‌دکلها (D) محاسبه‌ و نتیجه‌ در جدول‌ (3) درج‌شده‌ است‌. در این‌ محاسبات‌ برای‌ ولتاژ 400کیلوولت‌ از مقدار ماکزیمم‌ Ls و برای‌ سایرسطوح‌ ولتاژ از ارقام‌ ماکزیمم‌ LL استفاده‌ شده‌است‌.
لازم‌ به‌ توضیح‌ است‌ که‌ تنظیم‌ فاصله‌هادیها در سر دکلها به‌ معنی‌ مناسب‌ بودن‌فواصل‌ فازی‌ در خط انتقال‌ نیست‌، بلکه‌ بایدفاصله‌ فازها در وسط پایه‌ها نیز کنترل‌ شود.چون‌ ممکن‌ است‌ در اثر وزش‌ باد، فواصل ‌هادیها از حد مجاز کمتر شود. در چنین‌شرایطی‌، باید فاصله‌ هادیها در سر دکلهابیشتر از ارقام‌ محاسبه‌ شده‌ منظور شود تا در وسط پایه‌ها مشکلی‌ ایجاد نشود.

فواصل‌ فازی‌
برای‌ بررسی‌ فواصل‌ فازی‌ متداول‌ درخطوط انتقال‌ نیروی‌ کشور، مقادیر فواصل‌هوایی‌ و فازی‌ که‌ از روش‌ محاسباتی‌ فوق‌ به‌دست‌ آمده‌ است‌ با مقادیر مشابه‌ آنها که‌ درمراجع‌ مختلف‌ درج‌ شده‌ مورد مقایسه‌ قرار می‌گیرد. در ادامه‌ نوشتار مقادیر مربوط به‌ این‌عوامل‌ ارزیابی‌ می‌شود.


الف‌) فواصل‌ فازها در دکلهای‌ شبکه‌برق‌رسانی‌ کشور
بررسی‌ دکلهای‌ نصب‌ شده‌ در سطح‌شبکه‌های‌ برق‌رسانی‌ کشور، نشان‌ می‌دهدکه‌ ابعاد آنها دارای‌ تفاوتهای‌ محسوسی‌ است‌.گرچه‌ بخشی‌ از این‌ اختلافات‌ مربوط به‌شرایط آب‌ و هوایی‌ منطقه‌ است‌، اما قسمت‌دیگر به‌ ناهماهنگ‌بودن‌ معیارهای‌ طراحی‌ ازجمله‌ انتخاب‌ ضرایب‌ اطمینان‌ طراحی‌مرتبط می‌شود. جدول‌ (4) دامنه‌ تغییرات‌فواصل‌ فازها در چند نمونه‌ از دکلهای‌ خطوطانتقال‌ نیروی‌ کشور را نشان‌ می‌دهد.
ب‌) مقادیر واقعی‌ در چند خط انتقال‌خارج‌ از کشور
برای‌ نتیجه‌گیری‌ بهتر، وضعیت‌ فاصله‌فازی‌ در چند نمونه‌ از خطوط انتقال‌ نیرو نصب‌شده‌ در کشورهای‌ اروپایی‌ و آمریکایی‌ که‌ ازمراجع‌ مختلف‌ استخراج‌ شده‌ مورد مطالعه‌ قرارگرفت‌. با توجه‌ به‌ بررسیهای‌ انجام‌ شده‌، فاصله‌ هادیها تا بدنه‌ دکلها محاسبه‌ و نتیجه‌در جدول‌ (5) درج‌ شد. همان‌ طور که‌ از این‌جدول‌ پیداست‌ اختلاف‌ محسوسی‌ بین‌ ارقام ‌این‌ جدول‌ با دیگر مراجع‌، وجود دارد. گرچه‌بخشی‌ از این‌ اختلافات‌ مربوط به‌ شرایط آب‌ وهوایی‌ مسیر است‌ اما عامل‌ دیگر، تفاوت‌ در بکارگیری‌ معیارهای‌ طراحی‌ است‌.
ج‌) حداقل‌ مجاز در NESC
از آن‌ جا که‌ هدف‌، مقایسه‌ فواصل‌ هوایی‌محاسبه‌ شده‌ در مراجع‌ مختلف‌ است‌، لذامقادیر توصیه‌ شده‌ توسط NESCنیز موردبررسی‌ و مقایسه‌ قرار می‌گیرد. البته‌ چون‌ دراین‌ مرجع‌ ولتاژهای‌ معادل‌ سطوح‌ ولتاژ استاندارد کشور وجود ندارد، لذا فواصل‌ هوایی‌ولتاژهای‌ نزدیک‌ (سطوح‌ ولتاژ 69 ، 138 و 230)، انتخاب‌ و فواصل‌، با توجه‌ به‌سطوح‌ ولتاژ کشور، اصلاح‌ شده‌ است‌. جدول‌(6) حداقل‌ فاصله‌ هوایی‌ مجاز و فاصله‌ هادی‌تا دکل‌ را در چهار سطح‌ ولتاژ استاندارد کشورایران‌ نشان‌ می‌دهد.

مقایسه‌ فواصل‌ فازی‌ بررسیهای‌ انجام‌ شده‌ در این‌ نوشتارنشان‌ می‌دهد روشهای‌ بکار گرفته‌ شده‌ درمراجع‌ مختلف‌ برای‌ محاسبه‌ فواصل‌ فازی‌،متفاوت‌ بوده‌ که‌ این‌ امر باعث‌ بروز اختلافات‌محسوسی‌ در مقادیر فاصله‌ فازها تا بدنه ‌دکلها شده‌ است‌.


- حالت‌ اول‌: نتایج‌ محاسبات‌
- حالت‌ دوم‌: استاندارد NESC
- حالت‌ سوم‌: خطوط نصب‌ شده‌ در چند کشورخارجی‌
- حالت‌ چهارم‌: خطوط نصب‌ شده‌ در شبکه‌برق‌رسانی‌ ایران‌ .


گرچه‌ بخشی‌ از اختلاف‌ ارقام‌ موجود دراین‌ جدول‌ مربوط به‌ شرایط محیطی‌ است‌، امابه‌ هر حال‌ فواصل‌ هادیها تا دکلهای‌ خطوطنصب‌ شده‌ در کشور ایران‌ از حد متعارف‌ بیشتراست‌ که‌ باید مورد بازنگری‌ و ارزیابی‌ قرارگیرند.
با توجه‌ به‌ این‌ که‌ بهینه‌سازی‌ ابعاد و وزن‌دکلها یا برجهای‌ خطوط انتقال‌ نیرو بدون‌بکارگیری‌ معیارهای‌ مناسب‌ در محاسبه‌فواصل‌ فازی‌ میسر نیست‌ لذا باید این‌ اقدام‌مهم‌ در طراحی‌ خطوط انتقال‌ نیرو بخصوص‌ طراحی‌ دکلها به‌ طور جدی‌ مورد توجه‌ قرارگیرد. بدیهی‌ است‌ استانداردهای‌ دکلهای‌خطوط انتقال‌ نیرو بدون‌ توجه‌ به‌ این‌ مهم‌، نمی‌تواند از مطلوبیت‌ کافی‌ برخوردار باشد.


نتیجه‌:
بررسیهای‌ مقدماتی‌ انجام‌ شده‌ در این‌نوشتار نشان‌ می‌دهد که‌ معیارهای‌ موجودبرای‌ محاسبه‌ فواصل‌ فازی‌ در کشور دارای‌ضریب‌ اطمینان‌ بالایی‌ است‌ که‌ این‌ امر سبب‌افزایش‌ بی‌مورد ابعاد و وزن‌ دکلهای‌ خطوطانتقال‌ نیرو می‌شود.
بررسی‌ و مقایسه‌ فواصل‌ فازی‌ ابعاددکلهای‌ خطوط انتقال‌ نیروی‌ موجود در کشورایران‌ با تعدادی‌ از مراجع‌ نشان‌ می‌دهد که‌ دربسیاری‌ موارد امکان‌ کاهش‌ ابعاد آن‌، میسراست‌. از آن‌ جا که‌ مشخصات‌ فنی‌ دکلها مستقیما به‌ فواصل‌ فازها تا بدنه‌ دکل‌ ودرنتیجه‌ به‌ نیروهای‌ تحمیلی‌ بر آنها وابسته‌است‌، به‌ طور طبیعی‌ بهینه‌سازی‌ ابعاد و وزن‌دکلها بدون‌ انتخاب‌ معیار مناسب‌ برای‌ تعیین‌فواصل‌ فازی‌ میسر نیست‌.

 



سه شنبه 3 / 7 / 1391برچسب:, :: 10:29 ::  نويسنده : ahmad & saman

عکسی تاریخی که در 26 جولای 1967 توسط روکو مورابیتو گرفته شد، بعدها و در سال 1968، جایزه معتبر پلیتزر را به عکاسش پیشکش کرد. عکسی ماندگار که به بوسه زندگی معروف شد، بازتابی گسترده در دنیا داشت. راندال شامپیون، که یک سیم چین بود، با لمس سیم برق فشار قوی، بیهوش در میان زمین و آسمان معلق مانده بود.

 


در این حال، همکارش، تامسون به سرعت خود را به او رساند و تنفس دهان به دهان را آغاز کرد. او این کار را آن قدر ادامه داد تا تنفس راندال بازگشت و او جانی دوباره گرفت. شاید اگر آن روز تامسون کمی دیرتر خود را به همکارش می رساند، او دیگر به زندگی باز نمی گشت. به همین دلیل این عکس به بوسه زندگی معروف شد.



سه شنبه 2 / 7 / 1391برچسب:, :: 9:56 ::  نويسنده : ahmad & saman

شرح 50 رله حفاظتی در پستها و خطوط فوق توزیع
 همراه با نام لاتین و کد استاندارد ANSI  و  توضیح نحوه عملکرد آنها

زبان : فارسی
نوع فایل: PDF
حجم: 76 کیلو بایت
تعداد صفحات: 10 صفحه



چهار شنبه 1 / 7 / 1391برچسب:, :: 10:1 ::  نويسنده : ahmad & saman
 

طراحی و محاسبه تأسیسات الکتریکی

 یک بیمارستان 60 تختخوابه مدرن با زیربنای 7200 متر مربع 

پروژه فوق شامل:

1-طراحی و محاسبات روشنایی داخلی و خارجی کلیه فضاها با رعایت استانداردهای موجود

2-طراحی و محاسبات روشنایی فضاهای مختلف اعم از فضاهای رو باز نظیر خیابان ها و تقاطع ها و همچنین فضاهای سربسته نظیر کلیه سالن ها و دفاتر اداری و صنعتی

3-طراحی ومحاسبه اصلاح ضریب قدرت در کل سیستم برق رسانی

4-طراحی و محاسبات سطح مقطع کابل ها و سیم های تغذیه و تابلوهای توزیع و متعلقات اصلی و فرعی

5-محاسبه افت ولتاژ خطوط تغذیه روشنایی در کلیه تاسیسات داخلی و خارجی بیمارستان

6-طراحی :

سیستم آلارم حریق (با انواع سنسورهای مورد نیاز)

سیستم صوتی (پیج، مرکز تلفن، آیفن، آمپلی فایر)

سیستم برق های اضطراری (محلی یا مرکزی)

سیستم ساعت برقی و مادر ساعت

سیستم تصویری (دوربین های ویدیو و فیلمبرداری و...)  می باشد.

 

زبان : فارسی
نوع فایل: PDF
حجم: 553 کیلو بایت
تعداد صفحات: 23 صفحه


این پروژه میتواند برای مهندسین طراح و همچنین پروژه درس

 

تاسیسات الکتریکی دانشجویان رشته مهندسی برق مفید باشد .




آشنایی با سنسور فشار
ترانسدیوسر و ترانسمیتر تعریف ابزار دقیق لاستیک‌های ایرلس تعریفی نوین از تایر اتومبیل Flat CD Mouse موسی که در CD درایو لپ تاپ قرار می گیرد! لامپ های ال ای دی با قابلیت کنترل از راه دور ژاپنی‌ها نازک‌ترین صفحه نمایش جهان را با حباب صابون ساختند
نويسندگان